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Abstract
In the framework of the Thomas-Fermi approximation, we systematically study the EOSs and
microscopic structures of neutron star matter in a vast density range with nb≈ 10−10-2 fm−3, where
various covariant density functionals are adopted, i.e., those with nonlinear self couplings (NL3,
PK1, TM1, GM1, MTVTC) and density-dependent couplings (DD-LZ1, DDME-X, PKDD, DD-
ME2, DD2, TW99). It is found that the EOSs generally coincide with each other at nb 10−4 fm−3

and 0.1 fm−3 nb 0.3 fm−3, while in other density regions they are sensitive to the effective
interactions between nucleons. By adopting functionals with a larger slope of symmetry energy L, the
curvature parameter Ksym and neutron drip density generally increases, while the droplet size, proton
number of nucleus, core-crust transition density, and onset density of non-spherical nuclei, decrease.
All functionals predict neutron stars with maximum masses exceeding the two-solar-mass limit,
while those of DD2, DD-LZ1, DD-ME2, and DDME-X predict optimum neutron star radii
according to the observational constraints. Nevertheless, the corresponding skewness coefficients J
are much larger than expected, while only the functionals MTVTC and TW99 meet the start-of-art
constraints on J. More accurate measurements on the radius of PSR J0740+ 6620 and the maximum
mass of neutron stars are thus essential to identify the functional that satisfies all constraints from
nuclear physics and astrophysical observations. Approximate linear correlations between neutron
stars’ radii at M= 1.4Me and 2Me, the slope L and curvature parameter Ksym of symmetry energy
are observed as well, which are mainly attributed to the curvature-slope correlations in the functionals
adopted here. The results presented here are applicable for investigations of the structures and
evolutions of compact stars in a unified manner.

Supplementary material for this article is available online
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1. Introduction

Due to the challenges residing in simulating dense matter with
lattice QCD, the state and composition of stellar matter inside
compact stars is still unclear and exhibits large ambiguities. In
particular, the uncertainties in the equation of state (EOS) and
the corresponding microscopic structures are still sizable [1–5],
which were shown to play important roles in the properties and
evolutions of compact stars [6–19]. The properties of nuclear
matter around the saturation density (n0≈ 0.16 fm−3), on the
contrary, are well constrained by various terrestrial experiments,
astrophysical observations, and nuclear theories, where the
binding energy is B≈− 16MeV, the incompressibility
K= 240± 20MeV [20], the symmetry energy S= 31.7±
3.2MeV and its slope L= 58.7± 28.1MeV [21, 22]. Note that
those quantities can be further constrained by considering the
up-to-date astrophysical observations, heavy ion collision data,
measurements of the neutron skin thickness for 208Pb in PREX-
II [23], as well as predictions of chiral effective field theory, e.g.,
those in [24, 25]. Meanwhile, at vanishing densities, the inter-
action among nucleons is negligible so that nuclear matter
exhibits a gas phase with well-understood properties [26, 27].

At subsaturation densities, due to the liquid-gas phase
transition of nuclear matter, a mixed phase with various
nonuniform structures is expected, i.e., nuclear pasta [28–32],
which is typically found in the crusts of neutron stars and the
core region of supernovae at the stage of gravitational col-
lapse. By employing spherical and cylindrical approximations
for the Wigner-Seitz (WS) cell [33–37], five types of geo-
metrical structures for nuclear pasta were obtained aside from
the uniform phase, i.e, droplets, rods, slabs, tubes, and bub-
bles, while further investigations have revealed more com-
plicated structures [38–50]. Nevertheless, the investigation of
the EOSs and microscopic structures of nuclear pasta is still
far from complete due to the uncertainties in the nuclear
energy density functional [51–57], while a unified treatment
is preferred so that the uncertainties do not get larger [53, 56].

For stellar matter at larger densities, as we are entering the
multimessenger era, constraining the EOS with pulsar obser-
vations has reached unprecedented accuracy. For example, the
observation of two-solar-mass pulsars [58–62] has excluded
various soft EOSs for dense stellar matter. The multi-messen-
ger observations of the binary neutron star merger event GRB
170 817A-GW170817-AT 2017gfo have constrained the tidal
deformability of 1.4Me neutron star with 70�Λ1.4� 580 and
the radii R= 11.9± 1.4 km [63], indicating a soft EOS at small
densities. Additionally, based on pulse-profile modeling with
NICER and XMM-Newton data, the simultaneous measure-
ments of the masses and radii for PSR J0030+ 0451 and PSR
J0740+ 6620 [64–67] suggest that their radii are similar
(∼12.4 km) despite the large differences in masses. In such
cases, the likelihood of a strong first-order phase transition
inside two-solar-mass pulsars may be reduced [68].

The purpose of our current study is twofold. First, we
examine the structures of neutron stars without introducing
any new degrees of freedom that lead to first-order phase
transitions. Since the radius and crust thickness of a neutron
star are sensitive to the EOSs [53], a unified description for

neutron star matter is thus necessary [53, 56]. This leads to the
second purpose of our study, where we have obtained 11
EOSs and the corresponding microscopic structures of neu-
tron star matter in a unified manner adopting the numerical
recipe proposed in [69]. In particular, as was done in [35,
70–72], the properties of nuclear matter are fixed with rela-
tivistic mean field (RMF) models [73], which were very
successful in describing finite nuclei [73–82] and nuclear
matter [83–90]. Two types of RMF Lagrangian are con-
sidered, i.e., those with nonlinear self couplings (NL3 [91],
PK1 [92], TM1 [93], GM1 [94], MTVTC [35]) and density-
dependent couplings (DD-LZ1 [95], DDME-X [96], PKDD
[92], DD-ME2 [97], DD2 [98], TW99 [80]).

The paper is organized as follows. In section 2 we pre-
sent the theoretical framework for the covariant density
functionals adopted here and fix the microscopic structures of
neutron star matter. The obtained EOSs and microscopic
structures of neutron star matter are presented in section 3,
while the corresponding neutron star structures and the pos-
sible correlations with the symmetry energy coefficients are
investigated. We draw our conclusion in section 4

2. Theoretical framework

2.1. RMF models

The Lagrangian density of RMF models for the neutron star
matter considered here reads
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where τn=−τp= 1 is the 3rd component of isospin,
qi= e(1− τi)/2 the charge, and m m gn p n p, , sº + s* the
effective nucleon mass. The boson fields σ, ω, ρ, and A take
mean values with only the time components due to time-
reversal symmetry. Then the field tensors ωμν, ρμν, and Aμν

vanish except for

A A A, , .i i i i i i i i i0 0 0 0 0 0w w w r r r= - = ¶ = - = ¶ = - = ¶

The nonlinear self couplings of the mesons are deter-
mined by
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which effectively account for the in-medium effects and are
essential for the covariant density functionals NL3 [91], PK1
[92], TM1 [93], GM1 [94], and MTVTC [35] adopted here.
Alternatively, the in-medium effects can be treated with den-
sity-dependent coupling constants according to the Typel-
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Wolter ansatz [80], where
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Here ξ= σ, ω and the baryon number density nb= np+ nn
with n0 being the saturation density. In addition to the non-
linear ones, we have also adopted the density-dependent cov-
ariant density functionals DD-LZ1 [95], DDME-X [96], PKDD
[92], DD-ME2 [97], DD2 [98], and TW99 [80], where the
nonlinear self-couplings in equation (2) vanish with
g2= g3= c3= 0. For completeness, the parameter sets adopted
in this work are listed in table 1, where aσ,ω= 1 and
bσ,ω= cσ,ω= aρ= 0 if nonlinear self-couplings are adopted.

Carrying out standard variational procedure, the
equations of motion for boson fields are fixed by
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where νi represents the Fermi momentum and ( )f x =
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where x mi i inº * with m m 0.511 MeVe e= =* and
m m 105.66 MeV= =m m* .

In the Thomas-Fermi approximation (TFA), the optimum
density distributions ( )n ri


are fixed by minimizing the total

energy E at given total particle numbers Ni= ∫nid
3r, dimen-

sion D, and WS cell size RW, which follows the constancy of
chemical potentials, i.e.,
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Note that the ‘rearrangement’ term ΣR needs to be considered
if the density-dependent couplings are adopted in the

Lagrangian density [99], i.e.,
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2.2. Microscopic structures of neutron star matter

Neutron star matter at different densities exhibits various
microscopic structures. At nb 0.0003 fm−3, neutron-rich
nuclei and electrons form Coulomb lattices, which can be
found in the outer crusts of neutron stars and white dwarfs. At
larger densities, neutrons start to drip out and form neutron
gas, then the neutron star matter is essentially a liquid-gas
mixed phase and can be found in the inner crust region of a
neutron star. As density increases, the liquid phase will
eventually take non-spherical shapes that resemble pasta,
which are hence referred to as nuclear pasta [28–32]. At
densities nb 0.08 fm−3, the core-crust transition takes place
inside a neutron star, where the uniform phase is energetically
more favorable for neutron star matter.

To obtain the microscopic structures of neutron star
matter, we solve the Klein–Gordon equations and the density
distributions iteratively inside a WS cell. Adopting the
spherical and cylindrical approximations [35], the derivatives
in the Klein–Gordon equations (5)–(8) are then reduced to
one-dimensional, i.e.,
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which can be solved via fast cosine transformation fulfilling
the reflective boundary conditions at r= 0 and r= RW [100].
The density distributions of fermions are obtained with
equation (13) fulfilling the β-stability condition μn= μp+
μe= μp+ μμ, where in practice we have adopted the ima-
ginary time step method [101] to obtain the density profiles
for the next iteration. Note that at each iteration, the total
particle numbers fulfill the global charge neutrality condition

[ ( ) ( ) ( )] ( )n r n r n r rd 0. 18p e
3ò - - ºm

  

Different types of microscopic structures can be obtained with
equations (15)–(17), i.e., droplet, rod, slab, tube, bubble, and
uniform. At the given average baryon number density nb, we
then search for the energy minimum among six types of
nuclear matter structures with optimum cell sizes RW. Note
that the effects of charge screening are included in our calc-
ulation with electrons moving freely within WS cells, which
is expected to affect the microscopic structures of nuclear
pasta [35]. With the density profiles fixed by fulfilling the
convergency condition, the droplet size Rd and WS cell size
RW are then determined by
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Table 1. The adopted parameters for the covariant density functionals with nonlinear self couplings (NL3 [91], PK1 [92], TM1 [93], GM1 [94], MTVTC [35]) and density-dependent couplings
(DD-LZ1 [95], DDME-X [96], PKDD [92], DD-ME2 [97], DD2 [98], TW99 [80]).

mn mp mσ mω mρ gσ gω gρ g2 g3 c3
MeV MeV MeV MeV MeV fm−1

NL3 939 939 508.1941 782.501 763 10.2169 12.8675 4.4744 −10.4307 −28.8851 0
PK1 938 938 511.198 783 770 10.0289 12.6139 4.6322 −7.2325 0.6183 71.3075
TM1 939.5731 938.2796 514.0891 784.254 763 10.3222 13.0131 4.5297 −8.1688 −9.9976 55.636
GM1 938 938 510 783 770 8.874 43 10.609 57 4.097 72 −9.7908 −6.63661 0
MTVTC 938 938 400 783 769 6.3935 8.7207 4.2696 −10.7572 −4.04529 0
DD-LZ1 938.9 938.9 538.619216 783 769 12.001 429 14.292 525 7.575 467 0 0 0
DDME-X 938.5 938.5 547.332728 783 763 10.706 722 13.338 846 3.619 020 0 0 0
PKDD 939.5731 938.2796 555.5112 783 763 10.7385 13.1476 4.2998 0 0 0
DD-ME2 938.5 938.5 550.1238 783 763 10.5396 13.0189 3.6836 0 0 0
DD2 939.56536 938.27203 546.212459 783 763 10.686 681 13.342 362 3.626 940 0 0 0
TW99 939 939 550 783 763 10.7285 13.2902 3.6610 0 0 0

aσ bσ cσ dσ aω bω cω dω aρ bρ

DD-LZ1 1.062748 1.763627 2.308928 0.379 957 1.059181 0.418273 0.538663 0.786649 0.776095 0
DDME-X 1.397043 1.334964 2.067122 0.401 565 1.393601 1.019082 1.605966 0.455586 0.620220 −1
PKDD 1.327423 0.435126 0.691666 0.694 210 1.342170 0.371167 0.611397 0.738376 0.183305 −1
DD-ME2 1.3881 1.0943 1.7057 0.4421 1.3892 0.9240 1.4620 0.4775 0.5647 −1
DD2 1.357630 0.634442 1.005358 0.575 810 1.369718 0.496475 0.817753 0.638452 0.983955 −1
TW99 1.365469 0.226061 0.409704 0.901 995 1.402488 0.172577 0.344293 0.983955 0.515000 −1
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In order for the volume to be finite for the slabs and rods/
tubes at D= 1 and 2, here we have adopted a finite cell size
a= 30 fm. Meanwhile, as we decrease the density, it is found
that RW grows drastically and quickly exceeds the limit for
any viable numerical simulations. In such cases, as was done
in our previous study [69], at densities nb 10−4 fm−3 we
divide the WS cell into a core with radius Rin= 35.84 fm and
a spherical shell with constant densities.

3. Results and Discussion

3.1. Neutron star matter

The nuclear matter properties around the saturation density are
illustrated in table 2 for various covariant density functionals
adopted here, which cover a wide range for the incompressi-
bility K, the skewness coefficient J, the symmetry energy S, the
slope L and curvature parameter Ksym of the nuclear symmetry
energy. Based on those functionals, we then investigate the
EOSs and microscopic structures of neutron star matter
adopting the numerical recipe introduced in section 2.

In figure 1 we present the obtained energy per baryon,
pressure, and proton fraction for the most favorable nuclear shape
with optimum WS cell size RW. For comparison, the corresp-
onding results for uniform matter are presented in the left panels
as well. As we decrease the density, the proton fraction Yp of the

uniform phase decreases and eventually vanishes for most of the
functionals. Nevertheless, as indicated in table 1, adopting rea-
listic neutron and proton masses for the covariant density func-
tionals TM1, PKDD, and DD2, the proton fraction Yp of the
uniform phase does not vanish but increases to 1 as we decrease
the density at nb 10−4 fm−3, which is reasonable as protons are
more stable than neutrons. The contribution of electrons is then
present in order to reach the local charge neutrality condition
np = ne. Once nonuniform nuclear structures emerge, the proton
fraction Yp deviates significantly from that of the uniform phase,
which approaches to Yp = 0.43-0.45 at vanishing densities. The
energy per baryon is then reduced by up to 8MeV. Note that the
absolute values of the energy per baryon at vanishing densities
are sensitive to the adopted nucleon masses, while the obtained
binding energy for various functionals coincide with each other.

At vanishing densities, the pressure mainly comes from
the contributions of electrons and is thus increasing with Yp.
Except for those adopting realistic nucleon masses, the
obtained pressure for the nonuniform phase is larger than that
of the uniform one as predicted by most of the functionals. The
neutron drip densities nd can be obtained by equating
the chemical potential of neutrons with their mass, i.e.,
μn(nd)=mn. The obtained values of nd for various functionals
are then indicated in table 3, where those with the density-
dependent couplings generally predict smaller neutron drip
densities compared with that of nonlinear ones. Then at
nb 10−4 fm−3< nd, neutron star matter is comprised of
Coulomb lattices of nuclei and electrons, where similar values
for the pressure are obtained with various functionals in this
density range. In such cases, the EOSs of neutron star matter at
nb 10−4 fm−3 generally coincide with each other except for
the slight differences (within 0.1%) in the energy density due to
the variations in the nucleon masses indicated in table 1.

At larger densities with nb nd, we note that the slope of
the energy per baryon, pressure, and proton fraction change
suddenly as neutron gas starts to coexist with the liquid phase
of nuclear matter, which forms the nuclear pasta typically
found in the inner crusts of neutron stars. In contrast to the
stellar matter located in the outer crusts of neutron stars, as
indicated in the left panel of figure 2, the EOSs of the pasta
phase are sensitive to the adopted nuclear energy density
functional. It is found that the EOSs obtained with nonlinear

Table 2. Saturation properties of nuclear matter corresponding to the covariant density functionals indicated in table 1.

n0 B K J S L Ksym

fm−3 MeV MeV MeV MeV MeV MeV

NL3 0.148 −16.25 271.7 204 37.4 118.6 101
PK1 0.148 −16.27 282.7 −27.8 37.6 115.9 55
TM1 0.145 −16.26 281.2 −285 36.9 110.8 34
GM1 0.153 −16.33 300.5 −216 32.5 94.0 18
MTVTC 0.153 −16.30 239.8 −513 32.5 89.6 −6.5
DD-LZ1 0.158 −16.06 230.7 1330 32.0 42.5 −20
DDME-X 0.152 −16.11 267.6 874 32.3 49.7 −72
PKDD 0.150 −16.27 262.2 −119 36.8 90.2 −81
DD-ME2 0.152 −16.13 250.8 477 32.3 51.2 −87
DD2 0.149 −16.02 242.7 169 31.7 55.0 −93
TW99 0.153 −16.24 240.2 −540 32.8 55.3 −125
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couplings become stiffer at the energy density E/nb
20MeV fm−3 (nb 0.02 fm−3), while the EOSs obtained
with density-dependent couplings vary more smoothly with
density. In general, the relative uncertainty in the EOSs of the
pasta phase grows with density and then decreases once it
reaches the peak at E/nb≈ 20MeV fm−3. The corresponding
differences in the EOSs at subsaturation densities are expec-
ted to affect the radii and crust thickness of neutron stars,
which will be illustrated in figure 5. Note that for the func-
tional DD2, the obtained results for nuclear pasta deviate
significantly from other functionals. This is mainly because
we have employed the single nucleus approximation (SNA)

and neglected the contributions of light clusters as initially
proposed in [98]. For more suitable treatments adopting the
extended nuclear statistical equilibrium model, one can refer
to [102] with the publicly available EOS HS(DD2), which is
more reasonable than the DD2 EOS presented in the left panel
of figure 2 with a too large proton fraction.

If we further increase the density, the uniform phase
becomes energetically more favorable once exceeding the
core-crust transition densities indicated in table 3, e.g.,
nb 0.08 fm−3. The corresponding energy per baryon, pres-
sure, and proton fraction of neutron star matter are indicated
in the right panels of figure 1. In contrast to the cases at

Figure 1. The energy per baryon E/A, pressure P, and proton fraction Yp of neutron star matter as functions of baryon number density nb,
which are obtained with various covariant density functionals indicated in table 1. Both the uniform and nonuniform phases are illustrated in
the left panels, while only uniform phases are presented in the right panels since the nonuniform one does not emerge. See the supplementary
material for the corresponding EOS tables (available online at stacks.iop.org/CTP/74/095303/mmedia).

Table 3. Densities (in fm−3) for shape transitions are obtained by varying the density in a step of 0.002 fm−3. The neutron drip densities nd
obtained with μn(nd)= mn and critical densities nDU for the occurrence of DU processes with Yp(nDU)= 14.8% are indicated as well.

Transition NL3 PK1 TM1 GM1 MTVTC DD-LZ1 DDME-X PKDD DD-ME2 DD2 TW99
nd (10

−4) 2.4 2.7 2.3 3.1 3.1 1.9 1.9 2.3 2.0 1.7 1.8

droplet-rod — — — — — 0.059 0.065 — 0.063 0.041 0.063
rod-slab — — — — — 0.065 0.073 — 0.071 0.057 0.071
slab-tube — — — — — 0.069 — — 0.073 0.087 0.075
tube-bubble — — — — — — — — — 0.101 —

core-crust 0.057 0.061 0.061 0.067 0.061 0.071 0.077 0.065 0.075 0.111 0.077
nDU 0.228 0.230 0.236 0.309 0.328 — — 0.325 — — —
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smaller densities, the uncertainties in those quantities grow
drastically as density increases at nb 0.3 fm−3, where the
less constrained higher order coefficients such as L and Ksym

start to play important roles. If the EOSs do not cross with
each other, we note that the stiffness of EOS is directly linked
to the maximum mass of neutron stars as indicated in figure 5.
Despite their evident differences in the energy per baryon, as
indicated in the right panel of figure 2, we note that the EOSs
obtained with the functionals DD-LZ1 and DDME-X coin-
cide with each other at nb 0.08 fm−3.

The obtained proton fractions of neutron star matter at
nb 0.08 fm−3 show distinctive trends between the func-
tionals with nonlinear self-couplings and density-dependent
ones, which is attributed to the differences in the higher order
coefficients L and Ksym of nuclear symmetry energy as indi-
cated in table 2. It is found that Yp increases with density if
nonlinear self-couplings are adopted, while for density-
dependent ones Yp approaches a constant value (∼0.14). It is
worth mentioning that if isovector scalar channel (δ meson)
are included in density-dependent covariant density func-
tionals, the proton fraction may deviation from the trend and
increase with density [88]. Meanwhile, we note that a peculiar
density-dependent behavior of Yp (reaching its maximum at
nb≈ 0.5 fm−3) is obtained with the functional PKDD, which
is attributed to the large slope L but negative curvature
parameter Ksym of nuclear symmetry energy. In principle, the
proton fraction is directly connected to the most efficient
cooling mechanism of neutron stars. Once the momentum
conservation is fulfilled with Yp 14.8%, the direct Urca
(DU) processes ¯n p e en + +- and p+ e−→ n+ νe will
take place and rapidly cools the neutron star down [103, 104].
As indicated in figure 1, the critical densities nDU for the
occurrence of DU processes can be obtained once
Yp> 14.8%, where the corresponding values are presented in
table 3. It is found that the DU processes only take place if
the functionals with nonlinear self-couplings and PKDD are
employed.

Besides the EOSs, the variation in the microscopic
structures has significant implications on the transport and
elastic properties of neutron star matter, which would in turn

affect various phenomenons observed in neutron stars
[105, 106]. In figure 3 we present the obtained microscopic
structures of nonuniform neutron star matter corresponding to
the EOSs in figures 1 and 2, where the proton number Z, WS
cell radius RW, and droplet size Rd are indicated. As density
increases, the droplet, rod, slab, tube, bubble, and uniform
phases appear sequentially for the nuclear pasta in neutron
stars. The transition densities between different nuclear
shapes are indicated in table 3. We note that for the func-
tionals predicting large slope L of symmetry energy, only the
droplet phase emerges for the nuclear pasta in β-equilibrium,
while as indicated in figure 4 the core-crust transition den-
sities nt are smaller than those predicting smaller L as well.
This is consistent with previous studies, where the proton
number of nuclei, the core-crust transition density, and the
onset density of non-spherical nuclei generally decrease with
L [100, 107–111]. The obtained results with the functional
NL3 and DD-ME2 generally coincide with those in [109]
with slightly larger core-crust transition density, while those
of TM1 coincide with [110]. Meanwhile, according to
figure 4, it is evident that nt also decreases with the curvature
parameter Ksym of symmetry energy, which is closely related
to the curvature-slope correlations [112, 113]. To show the
consequences of adopting a functional that does not follow
the curvature-slope correlation, in figure 4 we present the
results predicted by FSUGarnet using the compressible liquid
drop model [114], where the L-nt correlation still holds
approximately but not for the Ksym-nt correlation. Note that
the functional DD2 predicts a rather large nt, which will be
reduced if the extended nuclear statistical equilibrium model
is adopted including the contributions of light clusters [102].

Similar to the EOSs of neutron star matter, as indicated in
figure 3, the microscopic structures vary little with respect to
the adopted functionals at nb 10−4 fm−3. For example,
slightly different proton numbers and droplet sizes are obtained
at vanishing densities (e.g., nb≈ 10−10 fm) adopting various
functionals, which vary within the ranges Z≈ 28–35 and
Rd≈ 5–5.5 fm and increase with density at nb 10−4 fm−3.
The obtained WS cell radius RW is decreasing with density and
is insensitive to the adopted functionals at nb 10−4 fm−3. We

Figure 2. The EOSs for the pasta (left) and uniform (right) phases of neutron star matter, in correspondence to figure 1.
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note that the differences in the microscopic structures start to
grow once nb nd, where the values of Z and Rd as functions
of density may exhibit different trends for various functionals.
At larger densities with nb 0.01 fm−3, the proton number Z
and WS cell radius RW are generally decreasing, while the
droplet size Rd increases. Throughout the vast density range
considered here, consistent with previous investigations [100,
107–111], the obtained values of Z and Rd approximately
decrease with L if different functionals are adopted, while the
values of RW are close to each other. Note that rather large
values of Z, Rd, and RW are obtained with the functional DD2,
which is mainly due to the SNA adopted here and neglecting
light clusters.

3.2. Neutron stars

Based on the unified EOSs of neutron star matter presented in
figures 1 and 2, the structures of neutron stars are obtained by
solving the TOV equation

( )( ) ( )P

r

GME

r

P E r P M

GM r

d

d

1 1 4

1 2
, 21

2

3p
= -

+ +
-

( )M

r
Er

d

d
4 , 222p=

Figure 3. Proton number Z, WS cell radius RW, and droplet size Rd for the nonuniform nuclear matter typically found in neutron star crusts,
where the corresponding EOSs are indicated in figure 1.

Figure 4. Crust-core transition densities nt (indicated in table 3)
obtained with various covariant density functionals and the
corresponding slope L and curvature parameter Ksym of symmetry
energy (indicated in table 2).
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where G= 6.707× 10−45 MeV−2 is the gravity constant. In
figure 5 we present the mass-radius relations of neutron stars
corresponding to the covariant density functionals indicated
in table 1. Various constraints from pulsar observations are
indicated in figure 5, i.e., the binary neutron star merger event
GW170817 [63], the simultaneous measurements of masses
and radii for PSR J0030+ 0451 and PSR J0740+ 6620
[64–67], and the measured mass of a compact object involved
in a compact binary coalescence from the gravitational-wave
signal GW190814 [115]. The open triangles in figure 5 cor-
respond to the critical masses MDU for DU processes with the
central densities exceeding nDU. It is expected that the neu-
trino emissivity is enhanced significantly for neutron stars
withM>MDU [116], which cool down too rapidly within just
a few years [117]. It is found that the DU processes only take
place if the functionals with nonlinear self-couplings and
PKDD are employed (MDU≈ 0.9-1.3 Me), which have large
slopes of symmetry energy with L 90MeV.

We note that all functionals predict neutron stars with
maximum masses exceeding 2 Me [62], while the functionals
NL3, DD-LZ1, and DDME-X predict even larger maximum
masses supporting the possibility that the secondary object
observed in GW190814 is a neutron star [115]. Nevertheless,
as indicated in table 2, the incompressibility, symmetry
energy and its slope for nuclear matter obtained with the
functional NL3 exceed the constraints from start-of-art studies
[20, 24, 25], leading to neutron stars with too large radii and
masses. A combined constraint on the masses and radii of
neutron stars suggests that DD2, DD-LZ1, DD-ME2, and
DDME-X are the most probable functionals that are con-
sistent with observations. However, to support massive neu-
tron stars, their skewness coefficients J are much larger than

expected, which was constrained to be J=−700± 500MeV
from fits of generalized Skyrme force to breathing-mode
energies [118] and J 390 70

60= - -
+ MeV from empirical pres-

sures in relativistic heavy-ion collisions [119]. The maximum
masses of neutron stars obtained by the two functionals
MTVTC and TW99 are close to 2 Me, while the corresp-
onding radii are slightly small and located in the lower ends
of the PSR J0740+ 6620 constraints [65, 67]. The functionals
PKDD, GM1, TM1, PK1, and NL3 predict slightly too large
radii according to the constraint derived from the binary
neutron star merger event GW170817 [63], which are
attributed to the much larger values for K and/or L as indi-
cated in table 2. Nevertheless, if exotic phases with the
emergence of new degrees of freedom such as mesons (π, K,
etc.), heavy baryons (Δ, Λ, Σ, Ξ, Ω, etc.), and the decon-
finement phase transition into quarks (u, d, s) were to take
place, the corresponding EOSs would become softer, which
effectively reduces the radii of compact stars and complies
with the observational constraints [3, 4, 120–126].

It was augured that the sudden spin-ups (glitches) of
pulsars are due to the angular momentum transfers from the
superfluid component of a neutron star’s interior to its solid
crust [127], whose characteristic properties could provide
additional constraints on neutron star structures. In particular,
the fractional crustal moment of inertia Ic/I can be measured
with

( )I

I T

2
, 23c
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p i
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where τc represents the characteristic age of the pulsar, T the
total time span for glitch monitoring, and ΔΩp/Ωp the frac-
tional frequency jump of glitches. To explain the glitches
observed in the Vela pulsar, the fractional crustal moment of
inertia was constrained to be Ic/I 1.4% [128]. However, it

Figure 5. Mass-radius relations of neutron stars corresponding to the
EOSs presented in figures 1 and 2, while the open triangles are the
critical masses MDU for DU processes. The shaded regions indicate
the constraints from the binary neutron star merger event GW170817
within 90% credible region [63], the observational pulse-profiles in
PSR J0030+ 0451 and PSR J0740+ 6620 within 68% credible
region [64–67], and the mass (2.50–2.67 Me) of a compact object
observed in the gravitational-wave signal GW190814 in 90%
credible region [115].

Figure 6. Crustal fraction of moment of inertia as a function of mass
for neutron stars indicated in figure 5. The horizontal lines and band
represent a possible constraint derived from the glitch activities in
the Vela pulsar [12, 128–132].

9

Commun. Theor. Phys. 74 (2022) 095303 C-J Xia et al



was argued that the entrainment of superfluid neutrons by the
solid crust could lower its mobility and increase the lower limit
to Ic/I 7%, causing the ‘glitch crisis’ where many nuclear
EOSs fail to meet the constraint [129–131]. Nevertheless, it is
worth mentioning that the entrainment effect may be sup-
pressed if the pairing gap is of order or greater than the strength
of the lattice potential [12], where the constraint can be reduced
to Ic/I 2.4± 0.1% [132].

For slowly rotating neutron stars, the fraction of crustal
moment of inertia can be estimated with [128]
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where Pt is the pressure at core-crust transition density nt and
β=GM/R the compactness of a neutron star. The obtained
results are then presented in figure 6, where the crustal
moment of inertia is decreasing with mass. It is evident that
Ic/I is sensitive to the EOS, and in particular, the crust one
since it determines the mass and thickness of a neutron star’s
crust. Therefore a unified treatment for the EOSs of uniform
(core) and nonuniform (crust) neutron star matter is essential
to obtain accurately the radii, crust properties, core-crust
transition density, as well as the corresponding microscopic
structures. In order to meet the constraints of the Vela pulsar

as indicated by the horizontal lines and band, we note that a
neutron star should not be more massive than a critical value,
which varies with the EOSs and the effectiveness of the
entrainment effect. Nevertheless, to distinguish the EOSs
from one another, more detailed investigations on pulsar
glitches are required in future studies.

To examine the possible correlations between the macro-
scopic neutron star structures and microscopic nuclear matter
properties, in figure 7 we present the radii of neutron stars at
M= 1.4Me and 2Me as well as the slope L and curvature
parameter Ksym of nuclear symmetry energy. It is evident that
there are linear L-Ksym correlations in RMF models [112, 113],
where Ksym increases with L. For the macroscopic neutron star
structures, it is found that R2 generally coincides with R1.4
except for the two cases obtained with the functionals TW99
and MTVTC, where the maximum masses are close to 2Me

with R2< R1.4. In such cases, if the radii R1.4 are indeed close
to R2 as observed in NICER and XMM-Newton missions
[64–67], then the maximum mass Mmax of neutron stars could
easily surpass 2.3Me as indicated in the lower-left panel of
figure 7, which approaches to the upper limit (�2.35Me)
according to the numerical simulations of binary neutron star
merger event GW170817 [133–135]. Meanwhile, we note that
the maximum mass Mmax generally increases with radius,
which reaches 2.77Me at R1.4= R2= 14.6 km for the

Figure 7. Correlations between neutron stars’ radii (R1.4 at M= 1.4Me and R2 at M= 2Me), the slope L and curvature parameter Ksym of
nuclear symmetry energy obtained with various covariant density functionals.
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functional NL3. The linear correlations between neutron stars’
radii and L (Ksym) are also observed. In the top-left panel of
figure 7 we find R1.4 increases with L, which is consistent with
previous investigations that the radius and tidal deformability
are closely related to L [24, 113, 136–139]. At the same time,
as indicated in the lower-right panel of figure 7, the radii of
two-solar-mass neutron stars R2 seem to have a better corre-
lation with the higher order coefficient Ksym instead of L, which
is attributed to the larger density range covered in those stars.
Such kinds of correlations provide opportunities to constrain
higher order coefficients of nuclear symmetry energy in the
absence of strangeness via future radius measurements with
both pulse-profile modeling [65, 67] and gravitational wave
observations [63]. Nevertheless, it is worth mentioning that the
correlations are mainly due to the particular choices of covar-
iant density functionals. If we consider a functional that does
not follow the L-Ksym correlation, such as FSUGarnet [114]
indicated in figure 7, the Ksym-R1.4,2 correlations become less
evident than the L-R1.4,2 correlations.

4. Conclusion

Based on the numerical recipe presented in our previous study
[69], in this work we investigate systematically the EOSs and
microscopic structures of neutron star matter in a vast density
range with nb≈ 10−10-2 fm−3 adopting various covariant
density functionals (NL3 [91], PK1 [92], TM1 [93], GM1
[94], and MTVTC [35], DD-LZ1 [95], DDME-X [96], PKDD
[92], DD-ME2 [97], DD2 [98], and TW99 [80]). All the
results are obtained in a unified manner adopting Thomas-
Fermi approximation, where spherical and cylindrical sym-
metries are assumed for the WS cells. The optimum config-
urations of neutron star matter in β-equilibrium are obtained
by searching for the energy minimum among six types of
nuclear matter structures (droplet, rod, slab, tube, bubble, and
uniform) at fixed baryon number density nb. The effects of
charge screening are accounted for with electrons moving
freely around the nucleus [35], where the proton number of
nucleus Z, droplet size Rd, and WS cell size RW become larger
compared with the previous investigations neglecting the
charge screening effects [69]. Note that we have adopted the
SNA without any light clusters, which is not applicable for
the functional DD2 as initially intended [98]. In such cases,
we recommend [102] for a more suitable EOS HS(DD2)
obtained with the extended nuclear statistical equilibrium
model.

The neutron drip densities of neutron star matter are
found to be nd≈ 2 × 10−4− 3× 10−4 fm−3, where those
with the density-dependent couplings generally predict
smaller nd than that of non-linear ones. At smaller densities,
neutron star matter is comprised of Coulomb lattices of nuclei
and electrons with pressure mainly coming from electrons,
where the EOSs of neutron star matter generally coincide with
each other (discrepancy within 0.1%). At nb> nd, the EOSs
are sensitive to the adopted functionals, where the relative
difference grows and reaches the peak at nb≈ 0.02 fm−3. The
relative uncertainty of the EOSs decreases and remains small

at nb 0.3 fm−3, which however grows drastically at larger
densities.

For the microscopic structures, it is found that only the
droplet (crust) and uniform (core) phases emerge if the cov-
ariant density functionals with nonlinear self-couplings are
adopted, while non-spherical shapes (rod, slab, tube, and
bubble) may appear if density-dependent couplings are
employed with generally smaller slope L of symmetry energy.
The corresponding core-crust transition densities nt decrease
with L as well. Meanwhile, the obtained droplet size Rd and
proton number of nucleus Z approximately decrease with L,
while the values of WS cell size RW are close to each other.
These observed trends generally coincide with previous
investigations [100, 107–111]. Additionally, similar correla-
tions with the curvature parameter Ksym are observed as well,
which is closely related to the curvature-slope correlations
[112, 113].

The neutron star structures are then investigated by
adopting the unified EOSs. For all functionals considered in
this work, the corresponding maximum masses of neutron
stars exceed the two-solar-mass limit, while the functionals
NL3, DD-LZ1, and DDME-X can even accommodate the
mass of the secondary object observed in GW190814 [115].
A combined constraint on both the masses and radii from
pulsar observations [63–67] suggests that DD2, DD-LZ1,
DD-ME2, and DDME-X are the most probable functionals
for describing neutron star matter, while those of MTVTC
and TW99 predict radii close to the lower ends of the PSR
J0740+ 6620 constraints [65, 67]. Nevertheless, in order to
support massive neutron stars, the skewness coefficients J for
DD2, DD-LZ1, DD-ME2, and DDME-X are much larger than
expected [118, 119], which could be disentangled if the radius
of PSR J0740+ 6620 [65, 67] and the maximum mass of
neutron stars [133–135] can be measured with higher accur-
acy. The functionals PKDD, GM1, TM1, PK1, and NL3
predict slightly too large radii according to the GW170817
constraint [63], which can be reduced if exotic phases emerge
at the center of neutron stars. Finally, we note there are
approximate linear correlations between neutron stars’ radii
(R1.4 at M= 1.4Me and R2 at M= 2Me) and the slope L of
nuclear symmetry energy. Since we have adopted covariant
density functionals with approximate curvature-slope corre-
lations, the correlations of those quantities with the curvature
parameter Ksym of symmetry energy are observed as well.

It was shown that the neutron star structures are sensitive
to the EOSs both in the core and crust regions, where a
unified description for neutron star matter is required [53, 56].
At the same time, the microscopic structures of neutron star
matter play important roles in the corresponding transport and
elastic properties, which affect various physical processes in
neutron stars [105, 106]. Particularly, we have estimated the
critical densities nDU and neutron star masses MDU at
Yp= 14.8%, above which the DU processes will take place
and cool the neutron star too rapidly within just a few years
[103, 104]. We note that the DU processes only take place if
functionals with L 90MeV are adopted. The critical density
lies in the range nDU≈ 0.23-0.33 fm−3> nt, so that the DU
processes are sensitive to the core EOSs. Meanwhile, the crust
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EOSs are closely connected to the fractional crustal moment
of inertia Ic/I, which can be constrained by the characteristic
properties of glitches observed in pulsars. It is shown that Ic/I
is sensitive to the adopted EOS and in particular, the crust
one, which provides opportunities to constrain neutron star
structures and the corresponding EOS based on glitch mon-
itoring. Further constraints may be obtained if we apply the
current results to the investigations of other topics in pulsars
such as asteroseismology [140–150], gravitational waves with
respect to the strength of astromaterials [151–156], neutrino-
pasta scattering [157], and the evolution of magnetic field
[90, 158]. In such cases, the EOSs and microscopic structures
of neutron star matter obtained in this work should be
applicable for the investigations on the structures and evolu-
tions of compact stars in a unified manner.
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