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Based on the density-dependent relativistic Hartree-Fock theory (DDRHF) for hadronic
matter, the properties of neutron stars have been studied and compared with the results
from the density-dependent relativistic mean field theory (DDRMF). Though similar
equations of state are obtained, DDRHF calculations give larger fractions of proton,
electron and muon at high baryon density for neutron star matter than the ones from
DDRMF. The maximum masses of neutron stars lie between 2.3 M⊙ and 2.5 M⊙, and
the corresponding radii between 11.7 km and 12.5 km. In addition, the phase transition
from hadronic matter to quark matter in neutron stars is studied by using the MIT
bag model for the quark phase. The transition is studied in both Gibbs and Maxwell
constructions.
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1. Introduction

Neutron stars provide a natural laboratory for exploring the baryonic matter at

high densities, well exceeding in the center the nuclear saturation density of ρsat =

0.16 fm−3. Recently, new results from the observations of neutron star properties

have been reported which provide stringent constraints on the equation of state

(EoS) of strongly interacting matter at high densities, see Ref. 1,2 and references

therein.
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On the description of nuclear matter and finite nuclei, within the relativistic

scheme, the mean field theory has achieved great success during the past years. One

of the most outstanding models is the relativistic Hartree approach with the no-sea

approximation, namely the relativistic mean field (RMF) theory.3–5 In recent years,

RMF models with density dependent nucleon-meson couplings (DDRMF) have been

developed.6–9 However, in the framework of the RMF approach, the Fock terms are

dropped out, which may have remarkable effects on nuclear matter especially at

high density.

During the past decades, there were several attempts to include the Fock term in

the relativistic descriptions of nuclear systems.10–13 Recently, a new RHF method,

so called, density-dependent relativistic Hartree-Fock (DDRHF) theory14–16 has

brought us a new in-sight into this problem. With the effective Lagrangians of Refs.

14,15, the DDRHF theory can quantitatively describe the ground state properties

of many nuclear systems on the same level as RMF.

The appearance of quark matter in the interior of massive neutron stars is one

of the main issues of astrophysics. Many EoS have been used to describe the interior

of neutron stars.17–19 Due to the impact of recent experiments in heavy-ion colli-

sions20 and new observational limits for the mass and the mass-radius relationship

of compact stars,21–24 affected by large theoretical uncertainties for quark matter,

the question whether a pure quark phase exists in the interior of neutron stars or

not still have not yet received a clear answer.

The paper is organized as follows: In Sec. 2 we review the nuclear EoS within

the relativistic Hartree-Fock theory and the quark matter EoS within the MIT bag

model. In Sec. 3 we present the results for the neutron star structure in DDRHF

and the hadron to quark phase transition. Section 4 contains our conclusions.

2. Theoretical Framework

2.1. Hadronic Phase: The Relativistic Hartree-Fock Theory

In the present work, we study nuclear matter properties based on the new devel-

oped density dependent relativistic Hartree-Fock theory. The details of the DDRHF

theory can be found in Ref. 14–16. The DDRHF theory starts from an effective

Lagrangian density where nucleons are described as Dirac spinors interacting via

exchange of several mesons (σ, ω, π and ρ) and the photons. Using the Legendre

transformation and the equations of motion for the mesons and photon field opera-

tors, the Hamiltonian can be written in a form which includes only nucleon degree

of freedom,

H =

∫

d3x
[

ψ̄[−iγ · ∇ +M ]ψ
]

+
1

2

∫

d3xd4y
∑

i=σ,ω,ρ,π,A

ψ̄(x)ψ̄(y)Γi(x, y)Di(x, y)ψ(y)ψ(x) , (1)
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where Γi(x, y) is the interaction vertex of the respective mesons, and Di(x, y) is the

corresponding meson propagator.

Generally, we can expand the nucleon field operator ψ into a complete set of

Dirac spinors u(p, s, τ)

ψ(x) =
∑

p,s,τ

u(p, s, τ)e−ipxcp,s,τ , (2)

where cp,s,τ denote annihilation operators for nucleons in the state (p, s, τ). Notice

that the no-sea approximation is assumed here. On such a basis, we can construct the

trial ground state |Φ0〉 =
A
∏

i=1

c†p,s,τ |0〉, where |0〉 is the physical vacuum. From the

above trial state , we can build up the energy functional by taking the expectation

value of Hamiltonian (1):

E ≡ 〈Φ0|H |Φ0〉 = Ek +
(

ED
σ + ED

ω + ED
ρ

)

+
(

EE
σ + EE

ω + EE
ρ + Eπ

)

, (3)

wherein the exchange terms are given by

EE
i = −

1

2

∑

p1,s1,τ1

∑

p2,s2,τ2

ū(p1, s1, τ1)ū(p2, s2, τ2)
Γi(1, 2)

m2
i + q2

u(p1, s1, τ1)u(p2, s2, τ2) .

Then, the self-energy can be determined by the self-consistent variation of the

energy functional, namely

Σ(p)u(p, s, τ) =
δ

δū(p, s, τ)

∑

σ,ω,ρ,π

[

ED
i + EE

i

]

. (4)

Generally, it can also be written as

Σ(p, pF ) = ΣS(p, pF ) + γ0Σ0(p, pF ) + γ · p̂ΣV (p, pF ) , (5)

where p̂ is the unitary vector along p, and pF is the Fermi momentum. Here, the

tensor term γ0γ · p̂ΣT (p, pF ) is omitted because it does not appear in the Hartree-

Fock approximation for the nuclear matter.

In this work, density-dependent meson-nucleon couplings will be used as intro-

duced in Ref. 6. For the coupling constant gπ, the exponential density dependence

is adopted as gπ (ρv) = gπ (0) e−aπx. Three new DDRHF parameter sets PKO1,

PKO2, PKO314–16 have been used in recent calculations.

The chemical potential can be calculated from self-energies

µ = EF = Σ0(pF ) +

√

[pF + ΣV (pF )]
2

+ [M + ΣS(pF )]
2
. (6)

In cold neutron star matter, the chemical potentials must fulfill the condition equi-

librium under weak interaction, i.e., µp = µn − µe and µµ = µe. Moreover, the

baryon number conservation, ρb = ρn + ρp, as well as the condition of charge neu-

trality, ρp = ρn + ρe, must be satisfied. Then the pressure can be obtained from the

thermodynamic relation

P (ρv) = ρ2
v

d

dρv

E

ρv

=
∑

i=n,p,e,µ

ρiµi − E . (7)
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2.2. Quark Phase: The MIT Bag Model

We now turn to briefly describe the bulk properties of uniform quark matter, de-

confined from the β-stable hadronic matter as mentioned in the previous section.

Here we use the MIT bag model.25 The thermodynamic potential of q = u, d, s

quarks can be expressed as a sum of the kinetic term and the one-gluon-exchange

term,26,27

Ωq(µq) = −
3m4

q

8π2

[

yqxq

3

(

2x2
q − 3

)

+ ln(xq + yq)

]

+ αs

3m4
q

2π3

{

[

yqxq − ln(xq + yq)
]2

−
2

3
x4

q + ln yq + 2 ln
( σren

mqyq

)[

yqxq − ln(xq + yq)
]

}

, (8)

where mq and µq are the q current quark masses and the chemical potential, respec-

tively, and yq = µq/mq, xq =
√

y2
q − 1. αs denotes the QCD fine structure constant,

whereas σren = 313 MeV is the renormalization point. In this work we will consider

massless u and d quarks (together with ms = 150 MeV), and choose αs = 0 since

it has no remarkable influence on neutron star bulk properties.28

The number density ρq of q quarks is related to Ωq via ρq = −∂Ωq/∂µq. Then

the total energy density and pressure for the quark system are given by

ǫQ(ρu, ρd, ρs) =
∑

q

(

Ωq + µqρq

)

+B , PQ(ρ) =
∑

q

µqρq − ǫQ . (9)

where B is the energy density difference between the perturbative vacuum and the

true vacuum, i.e., the bag constant. In the following we present results based on the

MIT model using constant values of the bag constant, B = 90, 120, 150 MeV/fm3.

The composition of β-stable quark matter is determined by imposing the con-

dition of equilibrium of the chemical potentials under weak interaction: µd = µs =

µu + µe. As in baryonic matter, the equilibrium relations between the chemical po-

tentials must be supplemented with the charge neutrality condition and the total

baryon number conservation in order to determine the chemical composition ρf (ρ).

3. Results and Discussion

3.1. Neutron Star Properties in The DDRHF Theory

We now study the neutron star properties in the DDRHF theory. For comparison, we

also perform the calculations with four DDRMF interactions: TW99,6 DD-ME1,7

DD-ME2,8 PKDD.9 In Fig. 1 (a) are shown the symmetry energies as a function of

the baryon density for different DDRMF and DDRHF EoSs. At high density, three

DDRHF interactions PKO1, PKO2 and PKO3 give sizable enhancement for the

symmetry energies than DDRMF ones, while PKDD give different results from other

DDRMF EoSs. These remarkable distinctions would have a large influence on the

cooling behavior of neutron stars. According to recent analyses,1,29 an acceptable

EoS shall not allow direct Urca processes to occur in neutron stars with masses

below 1.5 M⊙, otherwise it will be in disagreement with modern observational soft
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X-ray data in the temperature-age diagram. This constrains the density dependence

of the nuclear asymmetry energy which should not be too strong. From Fig. 1 (b),

one can see that the DDRHF results cannot be in agreement with this constraint.

In particular, for PKO1, D-Urca will occur at fairly low mass 1.2 M⊙. However,

there are still several uncertainties concerning the cooling mechanism of neutron

stars,30and this constraint may not be considered as a stringent one and there

could be other mechanisms, e.g. appearance of quark phase, to solve this problem.

The EoSs of β-stable neutron star matter are shown in Fig. 2 (a). Three DDRHF

interactions give the similar trend to DD-ME1 and DD-ME2 in DDRMF, while

PKDD give a little softer one and TW99 have softest EoS. As a result, the maximum
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Fig. 1. (a) The symmetry energies for different EoSs. (b) Proton fractions in neutron star matter
for different EoSs. The line labeled with D-Urca is threshold for happening direct Urca process.
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Fig. 2. (a) Pressure vs. baryon density of the neutron star matter for different nuclear EoSs. (b)
Mass vs. central density of compact stars for different nuclear EoSs. Filled squares denote the
maximum mass configurations. The observational constraints are taken from Fig. 2 in Ref. 1
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masses of neutron stars lie between 2.3 M⊙ and 2.5 M⊙ in DDRHF, as shown

in Fig. 2 (b), consisting with observational constraint from PSR J0751+1807.21

Furthermore, mass-radius relations of pure neutron stars are shown in Fig. 4 (a).

One can see DDRHF have a better aggreement with three observational limits22–24

than DDRMF, especially for EXO 0748-676.24 In DDRMF, TW99 gives smaller

maximum mass and radius than others, which is not consistent with constraints.

3.2. Hadron-Quark Phase Transition in Neutron Star Matter

We now consider the hadron-quark phase transition in neutron stars. Both the sim-

ple Maxwell construction and the more general Gibbs (Glendenning) construction31

are adopted to treat the phase transition. In the Maxwell construction, the transi-

tion is determined by the intersection points between the hadronic and the quark

phase in the plot of pressure versus baryonic (neutron) chemical potential. After

projecting this crossing point onto the plot of density versus baryonic (neutron)

chemical potential, one can get the corresponding transition densities from low-

density baryonic matter, ρH , to high-density quark matter, ρQ. So between these

two densities, there will be a plateau for pressure in the EoS curve, seen in Fig. 3

(a). This sudden density increase would make stars to be unstable when the gravi-

tational interaction is taken into account. In addition, from the figure we find that,

when bag constant of the MIT bag model increases, the pressure of phase transition

occurring will also increase, and the transition density will go up, too.

In the Gibbs construction, there are two conserved charges. Hence, a mixed phase
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Fig. 3. (a) Pressure vs. baryon density of β-stable neutron star matter for different EoSs. The
dotted lines show the hadron-quark phase transition in Maxwell construction for different bag
constants, while the dot-dashed line show the result in Gibbs construction for B = 150 MeV/fm3.
(b) Gibbs phase construction of a two-component system. The red circle NP and QP show the
pressure of the hadronic and the quark phase under the condition of charge neutrality. The solid
black curves MP correspond to the mixed phase for different bag constants.
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Fig. 4. Mass-radius relations for compact stars corresponding to (a) different nuclear matter
EoSs. (b) different hybrid star EoSs (DDRMF+MIT). The observational constraints are taken
from Ref. 1,2 and therein.

will emerge where both hadron phase and quark phase coexist. From Fig. 3 (a) we

can see the plateau for pressure has been destroyed when the Gibbs construction is

considered. In the mixed phase, the pressure is the same in the two phases to ensure

mechanical stability, and goes up continuously with increasing baryon density. In

Fig. 3 (b) are shown the pressure routes in two chemical potential component plane.

While the neutron density goes up, the electron chemical potential increases merely

in pure hadron phase. The emergence of quark matter makes it to decrease in

mixed phase and approach to zero in pure quark phase. During the total process,

the pressure always raises monotonously up. Moreover, from the figure one can see,

given the lager bag constants, the transition to occur at higher baryon density.

Fig. 4 (b) are shown the mass-radius relations using different hybrid star EoSs.

Both two constructions for the phase transition are used. It has been found that

different constructions influence very little the final mass-radius relation of massive

neutron stars. Within the MIT bag model with constant B, the maximum mass of a

neutron star never exceeds a value of about 1.6 M⊙, and the star radius will increase

when B goes up. These results are not in agreement with recent observational

constraints. Therefore, more refined quark models are necessary in further studies.

4. Conclusions

In conclusion, we studied neutron star properties based on the DDRHF theory, and

compared with recent observational data of neutron stars. For maximum masses

of neutron stars, theoretical results 2.3 M⊙ ≤ Mmax ≤ 2.5 M⊙ could reproduce

recent observational constraint. However, DDRHF gives larger proton fractions at

high baryon density for neutron star matter than ones from DDRMF, which are

not consistent with D-Urca constraint. Then the hadron-quark phase transition is
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studied by using the MIT bag model. Different transition constructions give similar

maximum masses. While bag constant decreases, the maximum mass will increase

but can never be larger than 1.6 M⊙, meanwhile the radius of stars will be reduced.
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