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The properties of pairing correlations in symmetric nuclear matter are studied in the
relativistic mean field (RMF) theory with the effective interaction, PK1. Considering
the well-known problem that the pairing gap at the Fermi surface calculated with RMF
effective interactions is three times larger than that with the Gogny force, an effective
factor in the particle–particle channel is introduced. For the RMF calculation with PK1,
an effective factor of 0.76 gives a maximum pairing gap of 3.2 MeV at a Fermi momentum
of 0.9 fm−1, which is consistent with the result with the Gogny force.
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1. Introduction

For several years, mean field theory, including non-relativistic mean field theory

with effective nucleon–nucleon interactions such as Skyrme or Gogny, and rela-

tivistic mean field (RMF) theory, has received a great deal of attention due to its

successful descriptions of many nuclear phenomena. In the framework of the RMF

theory,1 nucleons interact via the exchanges of mesons and photons. Represen-

tations with large scalar and vector fields in nuclei provide simpler and more

efficient descriptions than non-relativistic approaches, which neglect these scales.

In this sense, RMF theory is more fundamental. With a limited number of free

parameters, i.e. meson masses and meson–nucleon coupling constants, RMF theory

has proved to be successful at quantitatively describing the properties of nuclear
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matter and neutron stars,2 nuclei near the valley of stability,3–5 and exotic nuclei

with large neutron or proton excess with the proper treatment of the pairing corre-

lations and continuum effects.6–9 The theory naturally provides the spin-orbit po-

tential, the origin of the pseudo-spin symmetry10,11 as a relativistic symmetry,12–15

and the spin symmetry in the anti-nucleon spectrum.16

Since the 1950s, a large number of striking experimental facts, such as the

binding energy difference between even–even and odd–even nuclei and a system-

atic reduction of the moments of inertia of even–even nuclei compared with their

neighboring odd–even nuclei in deformed nuclei, suggest the existence of super-

fluid phenomena in such systems.17 In astrophysics, the origin of pulsar glitches,18

namely, sudden discontinuities in the spin-down of pulsars, can also be understood

via superfluidity in the inner crust of these stars. All of these phenomena suggest

that pairing correlations play an important role in the theoretical study of the

properties of nuclei structure and nuclear matter.

The first relativistic study of superfluidity in infinite nuclear matter was done

by Kucharek and Ring in 1991.19 They studied the pairing correlations in symmet-

ric nuclear matter using the relativistic Hartree–Bogoliubov (RHB) method with

a one-boson-exchange (OBE) potential in the particle–particle channel. However,

the resulting pairing gap at the Fermi surface was found to be about three times

larger than that with the Gogny force.20 Therefore, the effective pairing interaction

used in the RHB calculation is either the finite range Gogny force or the Skyrme

type zero-range force. In particular, with the Skyrme type zero-range force, various

achievements have been made to describe nuclei far from the line of β-stability with

the proper treatment of the pairing correlations and continuum effects.6–9

However, it is still an open problem as to how the same nucleon interaction via

the exchanges of mesons and photons in the Hartree channel can also be used in

the particle–particle channel. In fact, the large pairing gap in the RHB calculation

with an OBE potential in the particle–particle channel comes from the behavior

of the pairing matrix elements at large momenta.21 The various effective forces

in RMF models are adjusted for mean-field calculations in the Hartree channel

only, i.e. only for momenta below the Fermi momentum, thus a realistic particle–

particle interactions can have very different behaviors at high momenta. Therefore,

in order to get reasonable values for the pairing gap, one can use a suitable value

of cut-off in the momentum space in the relativistic mean field calculations,5,21–23

or consider various effects, such as the medium polarization, the in-medium meson

mass decrease, and the mesons’ nonlinear terms to reduce the pairing gap in nuclear

matter.24–26

In this paper, the properties of pairing correlations in symmetric nuclear matter

are studied in the RMF theory with the newly developed effective interaction,

PK1.27 In order to solve the well-known problem that the pairing gap at the Fermi

surface calculated with RMF effective interactions is three times larger than that

with the Gogny force, an effective factor in the particle–particle channel will be

introduced. In Sec. 2, a brief description of the RMF theory and RHB theory for
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nuclear matter is presented. The results and a discussion are given in Sec. 3. Finally,

in the last section, a brief summary is given.

2. Theoretical Framework

2.1. Relativistic mean field theory

A general review of RMF theory and its application in nuclear physics can be

found in Refs. 3–5. Here, a brief review of RMF theory for nuclear matter is given.

The starting point of RMF theory is an effective Lagrangian density with nucleons

interacting via the exchange of various mesons and photons:

L = ψ̄

[

iγµ∂µ −m− gσσ − gωγ
µωµ − gργ

µ~τ · ~ρµ − eγµ 1 − τ3

2
Aµ

]

ψ

+
1

2
∂µσ∂µσ − 1

2
m2

σσ
2 − U(σ) − 1

4
ΩµνΩµν +

1

2
m2

ωω
µωµ + U(ω)

− 1

4
~Rµν ~Rµν +

1

2
m2

ρ~ρ
µ · ~ρµ − 1

4
AµνAµν . (1)

The Dirac spinor ψ denotes the nucleon with mass m. The isoscalar scalar σ-

meson and isoscalar vector ω-meson offer medium-range attractive and short-range

repulsive interactions, respectively, and the isovector vector ρ-meson provides the

necessary isospin asymmetry. Their masses are denoted by mσ, mω and mρ. gσ ,

gω and gρ correspond to the meson–nucleon coupling constants. τ is the isospin of

the nucleon, and τ3 is its three-component. The nonlinear σ and ω self-interactions,

U(σ) and U(ω), are respectively denoted as

U(σ) =
1

3
g2σ

3 +
1

4
g3σ

4, U(ω) =
1

4
c3(ω

µωµ)2 , (2)

with the self-coupling constants g2, g3 and c3. The field tensors Ωµν , ~Rµν and Aµν

are

Ωµν = ∂µων − ∂νωµ, ~Rµν = ∂µ~ρν − ∂ν~ρµ, Aµν = ∂µAν − ∂νAµ . (3)

The classical variation principle gives the following equations of motion:
[

iγµ∂µ −m− gσσ − gωγ
µωµ − gργ

µ~τ · ~ρµ − eγµ 1 − τ3

2
Aµ

]

ψ = 0 , (4)

for the nucleon spinors, and

(∂µ∂µ +m2
σ)σ = −gσψ̄ψ − g2σ

2 − g3σ
3 , (5)

∂µΩµν +m2
ωω

ν = gωψ̄γ
νψ − c3(η

νων)3 , (6)

∂µ
~Rµν +m2

ρ~ρ
ν = gρψ̄γ

ν~τψ + gρ~ρµ × ~Rµν , (7)

∂µA
µν = eψ̄γν 1− τ3

2
ψ , (8)
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for the mesons and photons, where the sum over all the particle states in the no-sea

approximation is adopted for the source term in Eqs. (5)–(8).

2.2. Relativistic Hartree–Bogoliubov theory

Usually, in RMF theory, mesons are treated as classical fields. In order to describe

the superfluidity of the nuclear many-body system, one needs to quantize not only

the nucleon but also the meson fields. By using the well-known canonical quanti-

zation method and Green’s function techniques, neglecting retardation effects and

the Fock term as is mostly done in RMF, one gets the so-called relativistic Hartree–

Bogoliubov (RHB) equation19:
(

h− λ ∆

−∆∗ −h∗ + λ

)(

Uk

Vk

)

= ek

(

Uk

Vk

)

, (9)

where

h = α · p + V + β(M + S) (10)

is the Dirac Hamiltonian with the scalar potential S and vector potential V :

S = gσσ, V = β

(

gωγ
µωµ + gργ

µ~τ · ~ρµ + eγµ 1 − τ3

2
Aµ

)

. (11)

The pairing field is

∆ab =
1

2

∑

cd

V̄abcdκcd, (12)

where V̄abcd is the two-body effective interaction in the particle–particle (pp) chan-

nel and the pairing tensor κab =
∑

k V
∗
akUbk. The quasi-particle eigenvectors are

denoted as (Uk, Vk), and ek represents its corresponding quasi-particle energies.

The chemical potential λ in Eq. (9) is determined by the particle number with

the subsidiary condition,
∑

k V
2
k = N .

2.3. Application to symmetric nuclear matter

For static, uniform infinite nuclear matter, the coulomb field is neglected, and the

space-like components as well as the differential of the time-like components of the

meson fields vanish. Furthermore, for symmetric nuclear matter, the ρ-meson has

no contribution to the mean field potential. Then, the scalar potential S and vector

potential V are constants and have the simple form

S = gσ〈σ〉, V = gω〈ω0〉 . (13)

The RHB equation (9) can be decomposed into (2 × 2) matrices of BCS-type19:
(

ε(k) − λ ∆(k)

∆(k) −ε(k) + λ

)(

u(k)

v(k)

)

= e(k)

(

u(k)

v(k)

)

, (14)
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where the eigenvalue of the Dirac Hamiltonian for positive energies is denoted as

ε(k) = V +
√

k2 + (m+ S)2, the Fermi energy λ = ε(kF), and the quasi-particle

energy e(k) =
√

(ε(k) − λ)2 + ∆2(k). The corresponding occupation numbers v2(k)

have the form

v2(k) =
1

2

(

1 − ε(k) − λ
√

[ε(k) − λ]2 + ∆(k)2

)

. (15)

The pairing field ∆(k) obeys the usual gap equation:

∆(k) = − 1

8π2

∫ ∞

0

f · vpp(k, p)
∆(p)

√

(ε(p) − λ)2 + ∆2(p)
p2dp , (16)

where f is an effective factor introduced to reduce the pairing potential. The effec-

tive interaction in the pp channel vpp(k, p) is the one-meson exchange potential:

vpp(k, p) = vσ
pp(k, p) + vω

pp(k, p) + vρ
pp(k, p), (17)

where

vσ
pp(p, k) =

g2
σ

2ε∗(k)ε∗(p)

{

(ε∗(p) − ε∗(k))2 +m2
σ − 4m∗2

4pk
ln

(k + p)2 +m2
σ

(k − p)2 +m2
σ

− 1

}

,

(18)

vω
pp(p, k) =

g2
ω

ε∗(k)ε∗(p)

2ε∗(k)ε∗(p) −m∗2

2pk
ln

(k + p)2 +m2
ω

(k − p)2 +m2
ω

, (19)

vρ
pp(p, k) =

g2
ρ

ε∗(k)ε∗(p)

2ε∗(k)ε∗(p) −m∗2

2pk
ln

(k + p)2 +m2
ρ

(k − p)2 +m2
ρ

, (20)

with effective mass m∗ = m+ gσσ, and ε∗(k) =
√
k2 +m∗2.

The meson fields are replaced by their mean values and can be solved from the

corresponding equations of motion by the various given nucleon densities:

m2
σσ = −gσρs − g2σ

2 − g3σ
3 , (21)

m2
ωω0 = gωρv − c3ω

3
0 , (22)

where ρs and ρv are, respectively, the scalar- and baryon-density:

ρs = ψ̄ψ =
2

π2

∫ ∞

0

m+ gσσ
√

k2 + (m+ gσσ)2
v2(k)k2dk , (23)

ρv = ψ†ψ =
2

π2

∫ ∞

0

v2(k)k2dk . (24)
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3. Results and Discussion

For a given Fermi momentum kF, the coupled equations (14), (16), (21) and (22)

can be solved self-consistently by iteration. The properties of 1S0 pairing correla-

tions of symmetric nuclear matter are studied with the newly developed effective

interaction, PK1, which takes into account the self-interactions of the σ-meson and

ω-meson as well as the isospin dependence of the nuclear matter.27

The momentum integration in the gap equation, in principle, should go to in-

finity. In actual calculations, it is necessary to have a cut-off in the momentum

space and the convergence of the pairing gap on the cut-off momentum should be

checked. The dependence of the pairing gap on the cut-off momentum for different

Fermi momenta is given in Fig. 1. The results indicate that the cut-off momen-

tum kC ≥ 10 fm−1 will guarantee the numerical convergence. In the following,

kC = 20 fm−1 will be adopted and the corresponding effective interaction in the pp

channel, the momentum-dependence of the pairing gap, and the influence of effec-

tive interactions on the pairing gap at the Fermi surface, etc., will be investigated.

Fig. 1. (Color online) The pairing gap ∆(kF) at the Fermi surface as a function of the cut-off
momentum kC in momentum space for different Fermi momenta kF = 0.3, 0.6, 0.9 and 1.2 fm−1

with the effective interaction, PK1.

3.1. The effective interaction in the pp channel

The contour plot for the effective interaction in the pp channel vpp(k, p) for different

Fermi momenta with the effective interaction PK1 is shown in Fig. 2, where the

contours with negative values are denoted by dashed lines.

The interaction is attractive for small and repulsive for larger momenta k and

p, or equivalently, attractive for large distances and repulsive for small distances.
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Fig. 2. (Color online) Contour plots for the effective interaction in the pp channel vpp(k, p) as
a function of the momenta p and k for different Fermi momenta kF = 0.3, 0.6, 0.9 and 1.2 fm−1

with the effective interaction, PK1. The contour lines have a distance of 1 (fm2) and the negative
values are denoted by dashed lines.

At around 1.5 fm−1, the interaction will change from being attractive to being

repulsive. The repulsive interaction reaches its maximum value at the momenta k

and p around 4 fm−1. The maximum repulsive interaction increases with the Fermi

momentum.

The behavior of the effective interaction in the pp channel vpp(k, p) can be

understood from the contributions of different mesons, as shown in Fig. 3. The scalar

meson σ provides the attractive part of the effective interaction, vσ
pp(p, k), with a

peak value at zero momentum, and approaching zero with increasing momentum.

While the vector mesons ω and ρ provide the repulsive part, extending to higher

momenta than vσ
pp(p, k). The main contribution for the repulsive part comes from

the ω-meson, as seen in the figures; vω
pp(p, k) is one order of magnitude larger than

vρ
pp(p, k).
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Fig. 3. (Color online) Contour lines of different meson contributions for the effective interaction
in the pp channel vpp(k, p) as a function of the momenta p for Fermi momentum kF = 0.9 fm−1

with the effective interaction, PK1. The contour lines have units of fm2 and the negative contours
are shown in red.

Fig. 4. (Color online) Different meson contributions to the effective interaction in the pp channel
vpp(k, p) as a function of p at k = kF = 0.9 fm−1 with the effective interaction, PK1. The dashed

lines corresponds to the contributions from the σ-, ω- and ρ-fields; the solid line represents the
total contribution.

Different meson contributions to the effective interaction in the pp channel

vpp(k, p) as a function of p at k = kF = 0.9 fm−1 with the effective interaction,

PK1, are shown in Fig. 4. The sum of all the meson contributions results in con-

siderable repulsive interactions for momenta larger than about 1.5 fm−1, which is a

remarkably different situation from that modeled by the Gogny force calculation.19
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3.2. The momentum dependence of the pairing gap

For a given vpp(k, p), the momentum dependence of the pairing gap ∆(k) can be

obtained from Eq. (16). The momentum dependence of ∆(k) for different Fermi

momenta is shown in Fig. 5. The pairing gap has large and positive values at small

momenta, then decreases with the momentum and changes its sign around 2.5 fm−1.

It continues to decrease till ∼4.0 fm−1, then slowly goes to zero. The difference in

pairing gaps for different Fermi momenta is revealed mainly by the behaviors at

low momentum. At zero momentum, the largest pairing gap occurs at a Fermi

momentum of 0.9 fm−1.

Fig. 5. (Color online) The pairing gap ∆(k) as a function of the momentum k for Fermi momenta
kF = 0.3, 0.6, 0.9 and 1.2 fm−1 with the effective interaction, PK1.

3.3. The pairing gap at the Fermi surface

One of most important properties of the pairing gap is its value at the Fermi

surface. In Fig. 6, the pairing gap ∆(kF) at the Fermi surface as a function of the

Fermi momentum kF with the effective interaction, PK1, is compared to the results

obtained with the effective interactions, NL1,28 NL2,29 NL3,30 NLSH,31 TM132 and

the results calculated with Gogny force and Bonn potential.21

It is found that the pairing gap ∆(kF) is strongly dependent on the nuclear mat-

ter density, or equivalently, the Fermi momentum. The pairing gap ∆(kF) increases
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with Fermi momentum (or density), reaches a maximum at a Fermi momentum of

kF ≈ 0.9 fm−1, and then rapidly drops to zero. Usually, the pairing gap at the Fermi

surface calculated with RMF effective interactions is almost three times larger than

the value calculated with the Gogny force. Moreover, the pairing gap at lower Fermi

momenta does not vanish in calculations with RMF effective interactions, while it

does vanish in calculations with the Gogny force or the Bonn potential.

These differences come from the integral in Eq. (16) for the pairing gap, which

depends on the products of pairing gap parameter ∆(p) and the effective interaction

in the pp channel vpp(k, p). From vpp(k, p) in Fig. 2 and ∆(p) in Fig. 5, it is found

that considerable contributions to the integral in Eq. (16) may come from the high

momenta region. While the various effective forces in RMF models are adjusted

for mean-field calculations in the Hartree channel only, i.e. they are only valid for

momenta below the Fermi momentum,19 a realistic interaction in the pp channel

vpp(k, p) can exhibit a very different behavior at high momenta.

Considering that RMF effective interactions give a pairing field that is much too

strong, an effective factor is introduced in the particle–particle channel to reduce

the pairing gap. For PK1, if a factor f = 0.76 is introduced, the resulting pairing

gap is almost the same as those with the Gogny force or Bonn potential, and a

maximum pairing gap 3.2 MeV is obtained at a Fermi momentum of 0.9 fm−1, as

shown in Fig. 6.

Fig. 6. (Color online) The pairing gap ∆(kF) at the Fermi surface as a function of the Fermi
momentum kF for different effective interactions. The results for Gogny and Bonn come from
Ref. 21.
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4. Summary

The pairing properties in the 1S0 channel for symmetric nuclear matter have been

studied in the RMF theory with the effective interaction, PK1. The one-meson ex-

change potential is used in the particle–particle channel consistent with the particle–

hole channel. The effective interaction in the pp channel is found to be attractive

at small momenta with an attractive range around 1.5 fm−1 and repulsive at large

momenta. The pairing gap at the Fermi surface is strongly dependent on the nuclear

matter density, growing as the Fermi momentum increases, reaching its maximum

values at a Fermi momentum of around 0.9 fm−1, and then dropping to zero rapidly.

Considering the fact that the pairing gap at Fermi momenta calculated with RMF

effective interactions are three times larger than that with the Gogny force, an

effective factor in the particle–particle channel is introduced. For the effective in-

teraction, PK1, a factor f = 0.76 will produce almost the same results as those

with the Gogny force or with the Bonn potential.
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