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Abstract
The density dependence of nuclear symmetry energy is studied within the
covariant density functional (CDF) theory in terms of the kinetic energy,
isospin-singlet, and isospin-triplet potential energy parts of the energy density
functional. When the Fock diagram is introduced, it is found that both isospin-
singlet and isospin-triplet components of the potential energy play an
important role in determining the symmetry energy. At high densities, a strong
density-dependent behavior is revealed in the isospin-triplet potential part of
the symmetry energy. In addition, the inclusion of the Fock terms in the CDF
theory reduces the kinetic part of the symmetry energy and may lead to
negative values at the supranuclear density region, which is regarded partly as
the effect of the nuclear tensor-force components. The results demonstrate the
importance of the Fock diagram in the CDF theory on the isospin properties of
the in-medium nuclear force at high densities, especially from the isoscalar-
meson coupling channels.

Keywords: symmetry energy, nuclear matter, covariant density functional
theory, relativistic Hartree–Fock theory

(Some figures may appear in colour only in the online journal)

1. Introduction

The nuclear symmetry energy ES, as defined by the difference of the binding energy per
nucleon Eb in symmetric nuclear matter (SNM) and in pure neutron matter (PNM), plays an
essential role in understanding the isospin-dependent aspects in nuclear physics and the
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critical issues in astrophysics, such as neutron skin thickness and dipole excitation modes of
stable or exotic nuclei, as well as the radius and cooling mechanism of neutron stars [1–8].

Various nuclear models have been applied to the exploration of the symmetry energy.
Among the phenomenological approaches, two typical nuclear energy density functional
(EDF) theories, the non-relativistic Skyrme–Hartree–Fock (SHF) [9] and relativistic mean
field (RMF) [10–13] theories, are widely used for studying the issues related to symmetry
energy. Recently, the density dependence of the symmetry energy ES has been analyzed
systematically in the SHF theory with 21 sets of Skyrme interactions [14] and in RMF theory
with 23 sets of nonlinear, density-dependent, or point-coupling interactions [15]. It was found
that important deviations of predicted ES values appear beyond the nuclear saturation density

0ρ . Besides, the density dependence of ES can also be described by microscopic calculations,
such as variational approaches [16], Brueckner–Hartree–Fock (BHF) approaches [17–19],
and chiral effective field theory [20]. These calculations predict a relatively narrow band
compared to the data extracted from the isobaric analog states experiments [21] below the
saturation density, while the model deviations still remain at higher densities.

Until recently, extensive attention has being paid to the aspect of the theoretical model
uncertainties in terms of the statistical error estimates of the models’ parameters [22–29].
Since the EDF theories are effective approaches, and their parameters in effective interactions
are often determined by fitting to empirical data such as masses of several selected double-
magic nuclei and properties of nuclear matter at the saturation density 0ρ , the theoretical error
bars are unavoidably introduced when they are extrapolated to the density region beyond 0ρ .
Therefore, a stringent constraint on the equation of state at supranuclear densities from
terrestrial experiments or astrophysical observations could be used to refine the EDF para-
metrization and reduce the uncertainties in predicting ES at high densities.

With the inclusion of the Fock diagrams of the meson-nucleon couplings, the density-
dependent relativistic Hartree–Fock (RHF) theory [30] has been developed, and it has
achieved impressive success in describing the ground state [30–39] and excitation [40–42]
properties of finite nuclei. Both RMF and RHF theories belong to the covariant density
functional (CDF) theory. It has been found that the inclusion of the Fock terms strongly
affects the density-dependent behaviors of the symmetry energy at high densities and, in turn,
the radius and cooling process of neutron stars [3, 4, 43]. In particular, significant con-
tributions to the symmetry energy have been found from the Fock terms of the isoscalar σ and
ω couplings in contrast to the RMF, and the neutron-star properties determined by the
density-dependent RHF theory were shown to be in fairly good agreement with the data.

In principle, the symmetry energy reflects the isospin-related properties of the in-medium
nucleon–nucleon (NN) interactions, i.e., neutron–neutron (nn) and proton–proton (pp) inter-
actions versus neutron–proton (np) interactions [44]. In view of the lack of enough knowledge
about the isospin dependence of in-medium nuclear interactions, the investigation of the
symmetry energy, especially its behavior at high densities, from a variety of theoretical
models, together with the constraints from experiments such as heavy-ion collisions [7], could
provide an efficient probe about the isospin nature of the nuclear force.

The isospin structure of the in-medium NN interaction can be analyzed by decomposing
the two-body potentials into two-nucleon isospin-singlet (T = 0) and isospin-triplet (T = 1)
states. In the microscopic BHF approach, T = 0 and T = 1 components can be obtained by the
partial wave decomposition of the potential energy. Thus, the contributions from the different
spin-isospin channels to ES and the density slope parameter L can be analyzed quantitatively,
and it is found that the spin-triplet and isospin-singlet channel give the major contributions,
confirming the important role of the tensor force [45]. In the CDF theory, the isospin structure
of the in-medium NN interaction is naturally taken into account via the meson exchange
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mechanism. However, detailed analysis of the isospin decomposition of the potential energy
into different contributions to the symmetry energy has not been carried out yet in the CDF
framework. Particularly, in the density-dependent RHF theory, how the Fock diagram affects
the isospin-related nature of the in-medium NN interactions need to be clarified.

In addition, the kinetic EDF kε has been identified as a particularly good indicator of the
short-range correlations due to the tensor force in the nuclear ground state [45–50]. It is found
that the contribution from kε to the symmetry energy is strongly reduced and even becomes
negative due to such correlations when compared to the non-interacting case [46, 48–50]. In
CDF theory, the kinetic EDF kε , which contains the self-energies, gets the in-medium NN
interaction involved as well [3]. It is now possible in the RHF theory to extract the nuclear
tensor interaction directly from the Fock diagrams of various meson-nucleon couplings [39],
and distinct tensor effects are found in the exploration of the isospin properties of nuclear
matter and neutron star structures [43]. Thus, it is interesting to study the in-medium effects
hidden in kε within the CDF theory, in particular the contribution due to the short-range
correlations. In this work, in terms of kinetic energy, the T = 0 and T = 1 potential energy
parts of the EDF, we will study the isospin dependence of in-medium NN interactions based
on several selected CDF energy functionals and their influence on the nuclear symmetry
energy, especially the role of the Fock terms.

2. Theoretical framework

The detailed formalism of the CDF theory, in particular the RHF theory for nuclear systems,
can be found in [3, 39, 51]. In this section we briefly recall the main CDF formalism and then
present the decomposition of the EDF in terms of the two-nucleon isospin states. In the CDF
theory, the EDF is obtained by taking the expectation value of the Hamiltonian with respect to
the Hartree–Fock ground state. It consists of three parts

pu p s M u p s¯ ( , , )( · ) ( , , ), (1)k
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with , , ,ϕ σ ω ρ π= . Here kε denotes the kinetic EDF, and Dεϕ and Eεϕ correspond to the
Hartree (direct) and Fock (exchange) terms of the potential EDF, which come from the two-
body interaction parts of the Hamiltonian [3, 39]. In the above expressions, the (1, 2)Γϕ
represent various meson-NN interaction vertices. The Dirac spinors u p s( , , )τ depend on the
momentum p, spin s, and isospin τ

pu p s
E M

E
E M

( , , )
* *

2 *

1

· *

* *

, (4)s

1 2

στ χ χ= +

+
τ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where sχ and χτ denote the spin and isospin wave functions, respectively. The starred

quantities, which obey the relativistic mass-energy relation pE M* * *2 2 2= + , are defined as
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p p pM M p p E E p* ( ), * ˆ ( ), * ( ), (5)S V 0Σ Σ Σ= + = + = −
where SΣ is the scalar self-energy, and 0Σ and VΣ correspond to the time and space
components of the vector self-energy, respectively. In the following we use the notation

1 2τ = for neutron (n), and 1 2τ = − for proton (p). Then, we can define the two-nucleon
isospin-singlet state 00∣ 〉 and isospin-triplet states 11 , 10 , 1 1∣ 〉 ∣ 〉 ∣ − 〉 as
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Thus, the Hartree (direct) potential EDF (see equation (2)) can be divided into the isospin-
singlet (T = 0) and isospin-triplet (T = 1) parts
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Similarly, the corresponding parts of the Fock terms T
E
, 0εϕ = and T

E
, 1εϕ = can also be obtained.

As a result, the binding energy per nucleon Eb in nuclear matter for a given baryonic density

bρ and isospin asymmetry ( )n p bδ ρ ρ ρ≡ − can be decomposed as:
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where Eb k, is the kinetic part, Eb T
D
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, 0= are the Hartree and Fock terms of the T = 0

potential energy, and Eb T
D
, 1= and Eb T

E
, 1= are those of the T = 1 potential energy.

In general, the binding energy per nucleon E ( , )b bρ δ of asymmetric nuclear matter can be
expanded in a Taylor series with respect to the isospin asymmetry parameter δ, and the
density-dependent symmetry energy is then deduced from the second-order coefficient as,
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To shed light on the density dependence of the symmetry energy, ES can be further expanded
around the nuclear saturation density 0ρ as:

( )E J L( ) , (15)S b
2ρ ξ ξ= + +

J. Phys. G: Nucl. Part. Phys. 42 (2015) 095101 Q Zhao et al

4



where ( ) 3b 0 0ξ ρ ρ ρ≡ − , J E ( )S 0ρ≡ corresponds to the symmetry energy at saturation
density 0ρ , and the density slope L is,
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With the expression in equation (13), the symmetry energy ES and its density slope L can be
divided into:
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Combining equations (1) and (4), the kinetic EDF can be expressed as:
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where M M Eˆ * *= , pP Eˆ * *= , and k
Mε and k

Pε denote the contributions from the nucleon
mass and momentum, respectively. Then, the contribution from kε to symmetry energy,
namely, the kinetic part of ES, can be decomposed as,
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In order to investigate the in-medium effects hidden in the ES k, , we separate M̂ into:
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Correspondingly, ES k
M
, can be decomposed according to the components of the self-energy.

3. Results and discussion

In this work, the calculations are carried out by utilizing the RHF functionals PKO1 [30] and
PKA1 [31] and compared with results from the RMF ones TW99 [52] and PKDD [53]. They
have been applied in studies of the bulk properties of asymmetric nuclear matter and neutron
stars, and significant differences in the predicted symmetry energy have been revealed [3, 4].
For the RMF calculations with TW99 and PKDD, only the Hartree contributions are
involved, whereas both Hartree and Fock terms contribute to the RHF results of PKO1 and
PKA1. Due to the limitation of the approach itself, the π and ρ-tensor couplings are missing in
TW99 and PKDD, while PKO1 contains the π couplings, and both are involved in PKA1.

3.1. Density dependence of symmetry energy

In figure 1, the decomposition of the binding energy per nucleon Eb into the kinetic energy
part Eb k, and isospin-singlet and isospin-triplet potential energy parts Eb T, 0= and Eb T, 1= are
plotted for SNM ( 0δ = ) and PNM ( 1δ = ) with four selected CDF effective interactions. It is
found that at high densities the contributions from the T = 1 potential parts are enhanced in
PNM, whereas the terms Eb k, are slightly weakened as compared with those in SNM. In
addition, the T = 0 part Eb T, 0= , which is attributed to the np interaction and dominated by the
Hartree terms, shows a relatively small contribution in SNM and vanishes in PNM. When the
baryonic density is smaller than about 0.2 fm−3, it is seen that all the effective interactions
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predict nearly the same density-dependent behavior for the different components of Eb, while
the deviations among the models become larger with increasing density. Therefore, it is
expected that distinct model deviations on the density and isospin dependence of these
components will lead to some uncertainty in the symmetry energy.

In terms of isospin decomposition, we then obtain three components of nuclear symmetry
energy: the kinetic energy contribution ES k, , the isospin-singlet potential contribution

Figure 1. Decomposition of the binding energy per nucleon Eb in symmetric nuclear
matter ( 0δ = , left panel) and pure neutron matter ( 1δ = , right panel), namely, the
kinetic energy Eb k, , isospin-singlet potential energy Eb T, 0= , and isospin-triplet potential
energy Eb T, 1= as functions of baryonic density bρ . The results are calculated with the

RHF models PKO1 and PKA1 and with the RMF models TW99 and PKDD.

Figure 2. Decomposition of the nuclear symmetry energy ES, namely, the kinetic
energy part ES k, , isospin-singlet potential part ES T, 0= (left panel), and isospin-triplet
potential part ES T, 1= (right panel), as functions of baryonic density bρ . The results are

calculated with the RHF models PKO1 and PKA1 in comparison with the RMF ones
TW99 and PKDD.
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E E ES T S T
D

S T
E

, 0 , 0 , 0= += = = , and the isospin-triplet potential contribution E ES T S T
D

, 1 , 1= += =
ES T

E
, 1= , as shown in figure 2. One should notice that the contribution to ES from the Hartree

term in the ω-vector coupling channel is vanishing because of its isoscalar nature [3]. The
symmetry energy deduced from the T = 0 and T = 1 components of the Hartree term in the ω-
vector coupling channel actually compensate each other, i.e., E E 0S T

D
S T
D

, 0
,

, 1
,+ =ω ω

= = . Hence, in
the following discussion (also in figure 2) we do not include these parts.

From figure 2, it is seen that sizable deviations between the RMF and RHF results arise,
even in the low-density region. For ES k, and ES T, 0= , the RMF models give larger values than
the RHF ones, while the opposite trend occurs for ES T, 1= . Among the three components,
ES T, 1= displays the most distinct deviation between the RMF and RHF results, which leads to
a stiffer symmetry energy in the RHF at higher densities, as already shown in [3]. In addition,
it is seen in the RMF that the ES k, and ES T, 0= terms dominate the density dependence of the
symmetry energy at supranuclear densities, while all three components are non-negligible in
the RHF cases. An analysis of in-medium NN interactions could be helpful to further clarify
these results.

In figure 3 are shown the Hartree and Fock contributions to the isospin-singlet and
isospin-triplet channels of the symmetry energy, namely, ES T, 0= and ES T, 1= , for the selected
CDF effective interactions. For the Hartree terms, namely, ES T

D
, 0
,σ ρ
=
+ (left panel) and ES T

D
, 1
,σ ρ
=
+

(right panel), the results are attributed to the σ- and ρ-meson coupling channels, and distinct
deviations between the RMF and RHF are found in both the T = 0 and T = 1 channels. This
could be explained by the difference in the meson-nucleon coupling constants of the selected
effective interactions. It is interesting to see that when summing up the Hartree contribution of
the T = 0 and T = 1 channels, namely, E ES T

D
S T
D

, 0
,

, 1
,+σ ρ σ ρ

=
+

=
+ , the model deviations on the total

contribution from the Hartree term in effective NN interactions are reduced significantly. In

Figure 3. The isospin-singlet potential symmetry energy ES T, 0= is decomposed into a

Hartree part ES T
D
, 0
,σ ρ
=
+ from the σ- and ρ-meson coupling channels, and a Fock part ES T

E
, 0
,ρ π

=
+

from the ρ- and π-meson coupling channels, as functions of baryonic density bρ (left

panel). The isospin-triplet potential symmetry energy ES T, 1= is divided into a Hartree

part ES T
D
, 1
,σ ρ
=
+ from the σ- and ρ-meson coupling channels, a Fock part ES T

E
, 1
,ρ π

=
+ from the ρ-

and π-meson coupling channels, and a Fock part ES T
E
, 1
,σ ω

=
+ from the σ- and ω-meson

coupling channels (right panel). The results are calculated with the RHF effective
interactions PKO1 and PKA1 and with the RMF ones TW99 and PKDD.
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fact, the deviations on ES between the RMF and RHF calculations come mainly from the Fock
terms in effective NN interactions [3]. It can be clarified further by separating the contribu-
tions to the T = 0 and T = 1 symmetry energy from the Fock terms into the isoscalar and
isovector meson-nucleon coupling channels, as shown in figure 3. We see that the con-
tributions from the isovector meson fields, i.e., ES T

E
, 0
,ρ π

=
+ and ES T

E
, 1
,ρ π

=
+ , are negligible due to the

smaller isovector meson-nucleon coupling constants. However, the Fock contributions
ES T

E
, 1
,σ ω

=
+ of isoscalar mesons in the T = 1 channel exhibit rather stiff density-dependent

behavior, which in turn leads to the distinct deviation on ES T, 1= between the RMF and RHF
calculations in figure 2. Notice that, via the Fock diagram, the isoscalar σ- and ω-meson
account for only nn and pp interactions rather than the np interaction. It is therefore natural
that the relevant contributions ES T

E
, 0
,σ ω

=
+ vanish.

Now we turn to the discussion of the origin of the model deviations on the kinetic part
ES k, of the symmetry energy from a viewpoint of meson-nucleon coupling channels. It is seen
in figure 2 that the inclusion of the Fock terms in the RHF theory reduces remarkably the
kinetic part ES k, , as compared to the RMF results. At supranuclear densities of about
1 2.5 0ρ∼ the RHF results even become negative. To identify the physical mechanism, ES k, is

further decomposed into the mass- and momentum-related terms via equation (20), i.e., ES k
M
,

and ES k
P
, , as plotted in the left panel of figure 4. It is seen that the deviations between the RMF

and RHF results of ES k, are dominated by the mass-related part ES k
M
, rather than the

momentum-related one ES k
P
, , in which the self-energy VΣ is negligible in the RHF results. To

further clarify such model deviations, the right panel of figure 4 shows the contributions to
ES k

M
, from different terms of the scalar self-energy SΣ , according to equation (21). It is found

that the direct terms of the scalar self-energy S
DΣ in both the RMF and RHF present similar

contributions to ES k
M
, . For the Fock terms in PKO1, namely, S

E,Σ ϕ, a remarkably negative

contribution to ES k
M
, is found from the ω-meson coupling channel (denoted as S

E,Σ ω), while
relatively weak but still considerable contributions come from the other coupling channels,
eventually leading to a significant difference in the sign and magnitude of ES k, between the
RMF and RHF results (see the left panel of figure 2). In fact, it has been demonstrated very

Figure 4. Decomposition of the kinetic part ES k, of the symmetry energy, namely, the

mass-related and momentum-related terms ES k
M
, and ES k

P
, , according to equation (20)

(left panel). In the right panel, ES k
M
, is separated again according to various components

of the self-energy; see equation (21) for details. The results are calculated with the RHF
effective interaction PKO1, in comparison with the RMF one TW99.

J. Phys. G: Nucl. Part. Phys. 42 (2015) 095101 Q Zhao et al

8



recently that the nuclear tensor interactions are naturally enclosed in both the isoscalar and the
isovector meson-nucleon coupling channels with the presence of the Fock diagrams in the
RHF EDF [39, 43]. Consequently, the extra contributions from the Fock terms of the scalar
self-energy to ES k, could be regarded partly as the effects of the nuclear tensor-force com-
ponents therein, which is further related to the short-range correlation of the NN interactions,
as already discussed in other models [45–49]. Actually, according to the expressions of the
tensor-related EDF shown in [43], only the ω-meson via the Fock diagram could contribute
the tensor-force component of the scalar self-energy.

To further clarify the effects of Fock terms on the density dependence of the symmetry
energy, the calculated kinetic and potential parts of ES at supranuclear densities with the CDF
models are compared with the results with the correlated Fermi gas (CFG) model [50], as
shown in figure 5. In the CFG model, the tensor force-induced short-range correlations
between np pairs could shift nucleons to high momentum in SNM but have almost no effect
in PNM. Thus, the kinetic part of the symmetry energy with tensor correlations at 0ρ reduces
to about −10MeV in CFG, which differs significantly from 12.5+ MeV for the widely used
free Fermi gas model [50]. It is seen in figure 5 that the RHF model PKO1 and PKA1 could
give more comparable values of ES k, with the CFG model at supranuclear densities, while the
ES k, with the RMF is about 10 20∼ MeV larger than CFG. Therefore, it is clear that the
inclusion of the Fock terms in the CDF theory improve the description of the kinetic part of
the symmetry energy. However, for the potential part of the symmetry energy, it is found that
the RHF models give much larger values than the CFG model, which is attributed mainly to
extra Fock contributions of isoscalar mesons in the RHF, as seen in figure 3. Hence, the
experimental constraints on the potential part of ES at supranuclear densities will pave the
efficient way for improving the RHF EDF.

Figure 5. The density dependence of the kinetic (blue lines) and potential parts (red
lines) of the symmetry energy, calculated with the RHF models PKO1 and PKA1 and
with the RMF models TW99 and PKDD. For comparison, the referred lines (dash-dot-
dotted) and regions with the error bar from the correlated Fermi gas (CFG) model [50]
for the kinetic and potential parts are given as well.
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3.2. Symmetry energy properties at saturation density

It is also interesting to discuss the properties of the symmetry energy at nuclear saturation
density. Table 1 shows the contributions from the kinetic energy (kin), isospin-singlet (T = 0),
and isospin-triplet (T = 1) potential energy to the symmetry energy J and its density slope L
for SNM at the saturation density 0ρ , calculated with the selected CDFs. For comparison, we
list also the results calculated using the microscopic BHF theory with the Argonne V18
potential plus the Urbana IX three-body force [45], where it is exhibited that J and L at 0ρ are
mainly dominated by the T = 0 potential component and, hence, by the tensor component of
the nuclear force. Among the CDF results, if one disregards the direct ω-vector coupling, the
T = 0 and T = 1 components of the symmetry energy J determined by PKO1 and PKA1 are
very close to the BHF results, while the RMF models (TW99 and PKDD) lead to a relatively
large negative contribution in the T = 1 channel. Such deviation between the RHF and RMF
models, as seen in figure 3, is ascribed to extra contributions from the isoscalar coupling
channels ES T

E
, 1
,σ ω

=
+ via the Fock diagram. It has been argued that the dominance of the T = 0

component in the symmetry energy at saturation density is due to the effect of the tensor
component of the nuclear force through the S D3

1
3

1− channel [45]. However, in the CDF
calculations the Hartree potential energy term plays the role instead. For density slope
parameter L, although the T = 0 components in the CDF are similar to the BHF one, we see
that dramatically large uncertainties occur in kinetic energy and the T = 1 potential energy
parts, where the RMF effective interaction TW99 shows the smallest deviations from the BHF
ones. Thus, the density dependence of the symmetry energy at high densities becomes quite
dissimilar, and the trend in the RHF cases is strongly enhanced.

To clarify the above discussion we extract further in table 2 the detailed contributions to
the T = 0 and T = 1 potential symmetry energy from the different meson-nucleon coupling
channels. It is observed that in the CDF the T = 0 potential part of J mainly comes from the
Hartree diagram, especially from the isoscalar σ-meson coupling channel, while the T = 1
potential contribution to J results from the cancellation between the negative contribution of
the Hartree term of the σ-meson and positive contributions of other terms. Due to the sig-
nificant contribution to J from the Fock term of σ- and ω-mesons in the RHF models, the total
T = 1 potential symmetry energy at saturation density is very small for PKO1 and PKA1
effective interactions, close to the referred BHF calculations. Table 3 shows a similar
decomposition of the density slope parameter L as table 2. It is found that the T = 0 com-
ponent of the density slope L mainly comes from the Hartree term in the σ-meson coupling
channel, whereas for the T = 1 component there exist very large uncertainties in sign and
magnitude among the selected CDF calculations. It is seen that the inclusion of the Fock
terms, particularly in the isoscalar channels (σ- and ω-couplings), leads to extra uncertainties
on L and thus remarkable differences on the behavior of the symmetry energy at high
densities.

3.3. Influence of theoretical model uncertainties

It should be noticed that the error estimates of theoretical models have been paid extensive
attention in nuclear physics [22–29], and related works were collected as a focus issue
recently [54]. It is revealed that the systematic model errors occur due to an imperfect
modeling procedure: deficient parametrization, wrong assumptions, and missing physics due
to our lack of knowledge. Since the parameters in effective EDF interactions are often
determined by fitting to empirical data such as masses of several selected double-magic nuclei
and properties of nuclear matter at 0ρ , the theoretical error bars are unavoidably introduced
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Table 1. Kinetic energy (kin), isospin-singlet (T = 0), and isospin-triplet (T = 1) potential energy con-
tributions to the symmetry energy J and its density slope L at nuclear saturation density with the selected
CDF effective interactions. The values (in MeV) in/out of the parentheses denote the results with/
without the inclusion of the contribution from the Hartree term in the ω-meson coupling channel. The
referred values are taken from the BHF calculations in [45].

TW99 PKDD PKO1 PKA1 Reference [45]

kin 8.0 8.1 3.7 0.5 −1.0
J T = 0 51.0 (8.7) 50.8 (10.3) 38.8 (11.4) 42.4 (10.5) 44.2

T = 1 −26.2 (16.1) −22.1 (18.4) −8.1 (19.3) −5.7 (26.1) −9.0

kin 5.9 5.0 −34.5 −69.6 14.9
L T = 0 62.2 (−21.1) 78.2 (−9.7) 67.5 (0.8) 71.3 (−14.3) 69.1

T = 1 −12.8 (70.5) 7.0 (94.9) 64.8 (131.4) 103.2 (188.7) −17.5

Table 2. Contributions from different meson-nucleon coupling channels to the T = 0
and T = 1 potential symmetry energy at saturation density with the selected CDF
effective interactions. Units are given in MeV.

J Channel TW99 PKDD PKO1 PKA1

DΓσ 47.6 46.2 36.2 38.4
DΓρ 3.4 4.6 1.5 1.2

T = 0 EΓσ ω+ 0.0 0.0 0.0 0.0
EΓρ π+ 0.0 0.0 1.2 2.8

DΓσ −36.4 −35.8 −24.6 −23.3
DΓρ 10.1 13.7 4.4 3.5

T = 1 EΓσ ω+ 0.0 0.0 11.5 12.2
EΓρ π+ 0.0 0.0 0.6 1.9

Table 3. Similar to table 2 but for density slope parameter L of symmetry energy.

L Channel TW99 PKDD PKO1 PKA1

DΓσ 62.5 69.5 63.8 79.4
DΓρ −0.3 8.7 3.7 −0.3

T = 0 EΓσ ω+ 0.0 0.0 0.0 0.0
EΓρ π+ 0.0 0.0 −0.01 −7.9

DΓσ −11.9 −19.0 7.5 29.4
DΓρ −0.9 26.0 11.1 −0.9

T = 1 EΓσ ω+ 0.0 0.0 44.3 73.4
EΓρ π+ 0.0 0.0 1.8 1.3
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when they are extrapolated to the density region beyond 0ρ . Thus, it is necessary to perform
the error estimates of the predicted values in the above discussions, especially at supranuclear
densities. Usually one should take the method of least-squares regression analysis to give the
error estimates of theoretical models quantitatively [22–25], which is quite difficult to
quantify. Since we focus on the role of the Fock terms in deciding the symmetry energy, a
simplified method, i.e., doing a variation of ES with respect to each of the meson-nucleon
coupling constants, is used here to estimate the CDF model uncertainties of the symmetry
energy.

It is seen in figure 6 that in the RMF, the theoretical model uncertainties of ES arise only
from gρ and gσ , while in the RHF they are from all couplings due to the inclusion of the Fock
terms. For the variation of the kinetic part ES k, , a minus value is obtained around the
saturation density by gσ and gω, which could reduce the value of ES k, at 0ρ dramatically.
Besides, the model uncertainties of ES in the RHF model become more evident than in the
RMF at high densities. By separating the results into the contributions from the kinetic energy
and the Hartree and Fock terms of the potential energy in the RHF, it is found that at high
densities, gσ variation plays the dominant role in the model uncertainties of ES k, , while gρ and
gω govern the model uncertainties in the Hartree and Fock terms of ES pot, , respectively. A
stringent constraint on the equation of state at supranuclear densities from terrestrial
experiments or astrophysical observations could be helpful to improve the RHF EDF and
reduce the uncertainties in predicting ES.

4. Summary

In this paper, the density dependence of the nuclear symmetry energy ES is studied in the
CDF theory in terms of kinetic energy and the isospin-singlet (T = 0) and isospin-triplet
(T = 1) potential energy parts of the EDF. We find that the T = 0 potential contribution ES T, 0=

Figure 6. The first-order variation of total symmetry energy ES (a), (d), kinetic
symmetry energy ES k, (b), (e), and potential symmetry energy ES pot, (c), (f) with respect

to various coupling constants g g g, ,σ ω ρ, and fπ . The results are calculated by the RMF

model TW99 (a)–(c) and the RHF model PKO1 (d)–(f). The panel (f) is decomposed
further into Hartree and Fock contributions in the right.
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is strongly dominated by the Hartree terms in the σ- and ρ-meson coupling channels, while the
T = 1 potential contribution ES T, 1= is governed by the balance among various coupling
channels. Especially at high densities, a rather significant contribution arises from the Fock
terms of σ- and ω-mesons. It is shown that in the CDF calculations both the T = 0 and T = 1
potential components play an important role in determining the symmetry energy, especially
in the RHF cases, thus demonstrating the importance of the Fock diagram (in particular from
the isoscalar-meson coupling channels) in the isospin-related physics. It shows a different
physical mechanism in determining the symmetry energy from the microscopic BHF case
[45]. In addition, the inclusion of the Fock terms in the CDF theory changes the isospin
dependence of the scalar self-energy and correspondingly leads to the reduced kinetic energy
contribution to the symmetry energy, which could be regarded partly as the effects of the
nuclear tensor-force components. Finally, the influence of the CDF model uncertainties on the
symmetry energy is examined as well.
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