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Giant dipole resonance (GDR) is one of the fundamental collective excitation modes in nucleus. Continu-
ous efforts have been made to the evaluation of GDR key parameters in different nuclear data libraries. 
We introduced multitask learning (MTL) approach to learn and reproduce the evaluated experimental 
data of GDR key parameters, including both GDR energies and widths. Compared to the theoretical GDR 
parameters in RIPL-3 library, the accuracies of MTL approach are almost doubled for 129 nuclei with ex-
perimental data. The significant improvement is largely due to the right classification of unimodal nuclei 
and bimodal nuclei by the classification neural network. Based on the good performance of the neural 
network approach, an extrapolation to 79 nuclei around the β-stability line without experimental data is 
made, which provides an important reference to future experiments and data evaluations. The successful 
application of MTL approach in this work further proofs the feasibility of studying multi-output physical 
problems with multitask neural network in nuclear physics domain.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Giant dipole resonance (GDR) is one of the fundamental modes 
of nuclear collective excitations, whose energy exceeds the bind-
ing energy of nucleons [1,2]. The study of GDRs can contribute to 
the understanding of nuclear structure, for example, the ground-
state deformation of nuclei can be reflected by the shape of the 
GDR strength distributions [3–5]. Furthermore, GDR is a collective 
dipole oscillation of protons versus neutrons giving rise to a dy-
namic electric-dipole (E1) moment [6], which reflects asymmetry 
information in nuclear equation of state (EoS) [7].

The experimental GDR data have been measured in various 
types of experiments, namely, photonuclear experiments [8] with 
photons from bremsstrahlung radiation [9], positron annihilation 
in flight [10], and more recently laser Compton scattering (LCS) 
[11,12], as well as (p, p′) reaction [13], and so on. The experi-
mental GDR data can be fitted using the Lorentzian curve, from 
which the key GDR parameters that consist of the resonance en-
ergy E and shape width � can be derived. In major photonuclear 
data libraries (RIPL [14], IAEA [8], CENDL [15] etc.), experimental 
data of most nuclei near the β-stability line are available. In re-
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cent years, a new international coordinated research project (CRP) 
has been launched by IAEA, reevaluating the GDR experimental 
data, in order to improve the reliability of experimental data and 
to address the growing needs for photonuclear data [1,5,8]. Up to 
now, according to the International Atomic Energy Agency (IAEA) 
photonuclear data library, 219 isotopes were evaluated, including 
revisited 164 isotopes in the previous library [1,8], 37 isotopes 
with newly available experimental data, and 18 isotopes evaluated 
by a model prediction.

The increase of GDR experimental data brings challenges to rel-
evant theoretical models. Nowadays two types of nuclear models 
are mainly used in GDR predictions: microscopic approaches and 
phenomenological approaches. In microscopic approaches, quasi-
particle random phase approximation (QRPA) method is used most 
frequently. In recent years, QRPA models for the study of GDRs 
have been implemented fully self-consistently based on various 
density functionals, such as Skyrme functional [16,17], Gogny func-
tional [18–20] and relativistic functional [21,22]. As a microscopic 
model, QRPA achieved great success in describing the centroid en-
ergies of GDRs, however, it fails to describe the resonance width. 
To overcome this problem, beyond RPA approaches, such as sec-
ond RPA [23,24] and RPA with particle vibration coupling effects 
[25–27], were developed. However, due to the big computation 
cost, these models still haven’t been used for large-scale calcula-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tions. On the other hand, in the phenomenological approaches, the 
photoabsorption cross section of GDR is usually described by the 
Lorentzian representation, such as the standard Lorentzian (SLO) 
model [28,29], the modified Lorentzian (MLO) approach [30], and 
its simplified version SMLO [31], and so on. Besides, based on the 
phenomenological Goldhaber and Teller (GT) model [32,33], there 
are predictions of the GDR energies and widths for about 6000 
nuclei with 14 ≤ Z ≤ 110 lying within the proton and the neutron 
driplines, which are compiled in RIPL-3 as theoretical GDR parame-
ters [14,34]. Those microscopic and phenomenological models have 
given a reliable overall description of GDR, especially in medium 
to heavy mass nuclei. However, there is still a large space for im-
provement between theoretical results and experimental data.

With the development of computation techniques, machine 
learning shows its great power in learning complex big data and 
making predictions, and also began to show its usefulness in nu-
clear domain in recent years. Many fundamental properties of 
atomic nuclei have been explored by using machine learning meth-
ods. Bayesian neural network (BNN) was successfully used for the 
accurate descriptions of nuclear masses [35–38], fission yields of 
actinide nuclei [39], as well as β-decay half-lives [40]. The nu-
clear mass predictions are also studied by introducing the Fourier 
spectral analysis [41] and the radial basis function (RBF) approach 
[42]. The β-decay half-lives are also studied by a fully connected, 
multilayer artificial neural network [43,44]. These previous studies 
inspired us to use machine learning for the study of GDR key pa-
rameters, including resonance energies and widths. However, being 
different with previous applications in nuclear physics, this prob-
lem has two typical characters: (i) it is a multi-output problem, 
with both energies and widths as outputs; (ii) the data amount of 
GDR parameters is relatively small, where we select 129 isotopes 
with experimental data of GDR parameters. Regarding these char-
acters, multitask learning (MTL) [45,46] approach, which has not 
been applied in nuclear physics, is an ideal tool for the present 
problem. MTL approach can resolve multi-output problems very 
well by introducing multiple loss functions, which can get the op-
timal solution for each output, and avoid the situations where one 
output is overfitting and the other outputs have not yet reached 
the best-fitting state. Thus, MTL can be a good solution to deal 
with the problem which has multiple related tasks each of which 
has limited learning data [46].

In this work, we will introduce a new machine learning ap-
proach for the study of GDR key parameters, including resonance 
energies and widths. We combine three networks to build the 
model for GDR, which consists of one traditional classification neu-
ral network and two MTL networks. The GDR data are divided into 
two groups according to the number of peaks (single or double) by 
the classification neural network, and two MTL networks are then 
used for data training of each group. The machine learning results 
will be compared with those from GT model in RIPL-3 library [34]
to see how much improvement has been made. Particular atten-
tion is paid to the correct predictions of single or double peaks of 
GDR.

2. The models

The experimental photo absorption cross section of GDR can be 
well fitted by Lorentzian functions, from which a group of GDR 
parameters can be obtained for each nucleus. SLO [28,29] model is 
one of the most frequently used methods to obtain the experimen-
tal GDR parameters in the evaluation of photonuclear data.

Following Ref. [1], for a photon with energy εγ , the photoab-
sorption cross section σabs(εγ ) is taken as a sum of the terms 
corresponding to the GDR excitation given by σGDR(εγ ) and the 
quasi-deuteron photodisintegration σQD(εγ ) [47,48],
2

σabs(εγ ) = σGDR(εγ ) + σQD(εγ ). (1)

The expression for the minor contribution σQD(εγ ) can be 
found in Ref. [1], and here we mainly discuss the dominated com-
ponent σGDR(εγ ). σGDR(εγ ) is fitted by the SLO model.

σGDR(εγ ) =
jm∑
j=1

σGDR, j(εγ ) = σTRKs j · F j(εγ ), (2)

F j(εγ ) = 2

π

ε2
γ � j

[(ε2
γ − (E j)

2]2 + [εγ � j]2 , (3)

σTRK = 60
NZ

A
. (4)

The GDR parameters in SLO model consist of the resonance en-
ergy E j and shape width � j of the j-th mode of the giant dipole 
excitation for one-component Lorentzian nuclei with jm = 1 and 
two-component Lorentzian nuclei with jm = 2. Usually, deformed 
nuclei are calculated by two-component Lorentzian, since for de-
formed nuclei, the protons and neutrons oscillate against each 
other parallel to the axis of rotational symmetry as well as per-
pendicular to it. s j is the normalized contribution of the Lorentzian 
component F j in terms of the Thomas-Reiche-Kuhn (TRK) sum rule 
σTRK. � j is the GDR width, which is a constant that doesn’t depend 
on the γ -ray energy.

To obtain the GDR parameters E j and � j by machine learn-
ing, we built three neural networks. As the first step, we should 
distinguish the one-component Lorentzian nuclei with jm = 1 and 
two-component Lorentzian nuclei with jm = 2, which was accom-
plished by the classification neural network (Net0). Considering the 
effect of deformation parameter β2 on the shape of Lorentzian 
curve, we will take β2 as one of the inputs in the input layer, 
together with proton number Z , neutron number N and mass 
number A of the nucleus, i.e., x = (Z , N, A, β2). The output of Net0
is jm , which is 1 or 2 representing the number of Lorentzian com-
ponents. The inputs are connected with the outputs through the 
Net0:

a(1) = tanh(θ (1)x+ b(1)),a(2) = tanh(θ (2)a(1) + b(2))

Sθ ,b(x) = a(3) = tanh(θ (3)a(2) + b(3)) (5)

where tanh is the activation function, which provides the nonlin-
earity for the net. The a(1) and a(2) are the first and second hidden 
layer. The layer a(3) is the hypothetical output Sθ ,b of the Net0. The 
dimensions L of the vectors x, a(i) are

L(x) = 4, L(a(1)) = L(a(2)) = 6, L(a(3)) = 1. (6)

The dimension of the weight matrices θ (i) is L(a(i)) × L(a(i−1))

if we label a(0) = x, and the dimension of the bias parameters 
L(b(i)) = L(a(i)), where i = 1, 2, 3. Since L(Sθ ,b) = 1, we will use 
Sθ ,b(x) instead.

The loss function J (θ, b), which is used to describe the differ-
ence between the hypothetical output Sθ ,b(x) and the number of 
Lorentzian components jmi , can be obtained through

J (θ ,b) = 1

2N

N∑
i=1

(Sθ ,b(xi) − jmi)
2, (7)

where N is the number of data.

θ0,b0 =minimize
θ ,b

J (θ ,b). (8)

The optimal parameter set θ0, b0 of Net0 can be obtained by 
using the Adam optimizer [49] to minimize the loss function. As a 
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Fig. 1. A schematic diagram of the structure of MTL network Net1 for computing 
unimodal nuclei.

result, the accuracy of classification of one-component Lorentzian 
(unimodal) nuclei and two-component Lorentzian (bimodal) nuclei 
reaches about 98%. After the classification, we shall use MTL net-
works Net1 and Net2 for obtaining GDR parameters for each group 
of nuclei.

Net1 is used to train the GDR parameters of unimodal nuclei, 
i.e., E and �, while Net2 is used to train the GDR parameters of 
bimodal nuclei, i.e., (E1, E2) and (�1, �2). The inputs for Net1 and 
Net2 are the same as those for Net0, which are x = (Z , N, A, β2). 
The structure of Net1 is as follows,

a(1) = tanh(θ (1)x+ b(1)),

a(2) = tanh(θ (2)a(1) + b(2)),a(3) = tanh(θ (3)a(1) + b(3)),

a(4) = tanh(θ (4)a(2) + b(4)),a(5) = tanh(θ (5)a(3) + b(5)),

S E
θ ,b(x) = a(4), S�

θ ,b(x) = a(5), (9)

with dimensions of the above vectors being

L(a(1)) = L(a(2)) = L(a(3)) = 4, L(a(4)) = L(a(5)) = 1. (10)

The layers a(2) and a(3) are both calculated from a(1) , but sep-
arated to calculate each output. Thus a(1) is called shared layer, 
while a(2) and a(3) are called task layers. The outputs of Net1 are 
a(4) and a(5) . Their loss functions are defined as follows,

J E(θ ,b) = 1

2N

N∑
i=1

(SE
θ ,b(xi) − yE

i )2

(t Ei + t̄ E)2
, (11)

J�(θ ,b) = 1

2N

N∑
i=1

(S�
θ ,b(xi) − y�

i )2

(t�i + t̄�)2
, (12)

where N is the number of data; yE
i and y�

i are experimental data 
of energy E and width �; t Ei and t�i are the corresponding ex-
perimental errors. The introduction of the averaged experimental 
errors for energy and width t̄ E and t̄� is to avoid the divergence 
caused by small experimental errors that close to zero, which are 
defined as t̄ E = 1

N

∑N
i=1 t

E
i , t̄

� = 1
N

∑N
i=1 t

�
i .

The structure of Net1 is shown in Fig. 1. It’s clear to see that 
each output has its own task layer, loss function, as well as opti-
mizer, so as a result each output is calculated optimally. Moreover, 
3

the shared layer implies the relationship between tasks, making 
communications among different tasks possible.

The structure of Net2 is similar to that of Net1, however, Net2
has 4 outputs so that there are 4 task layers and 2 shared layers, 
making the network more complicated.

The structure of Net2 is shown as follows,

a(1) = tanh(θ (1)x+ b(1)),a(2) = tanh(θ (2)a(1) + b(2)),

a(3) = tanh(θ (3)a(2) + b(3)),a(4) = tanh(θ (4)a(2) + b(4)),

a(5) = tanh(θ (5)a(2) + b(5)),a(6) = tanh(θ (6)a(2) + b(6)),

a(7) = tanh(θ (7)a(3) + b(7)),a(8) = tanh(θ (8)a(4) + b(8)),

a(9) = tanh(θ (9)a(5) + b(9)),a(10) = tanh(θ (10)a(6) + b(10)),

S E1 = a(7), S E2 = a(8), S�1 = a(9), S�2 = a(10), (13)

with dimensions of above vectors being

L(a(1)) = L(a(2)) = L(a(3)) = · · · = L(a(6)) = 4,

L(a(7)) = L(a(8)) = L(a(9)) = L(a(10)) = 1. (14)

Net1 and Net2 use the Adam optimizer to minimize the loss func-
tion.

The root-mean-square (rms) deviations from experimental data 
of calculated GDR peak energies σrms(E) are obtained by

σrms(E) =
√√√√ 1

2N

N∑
i=1

[(Ecal
1i − yE1

i )2 + (Ecal
2i − yE2

i )2]. (15)

Ecal
1i and Ecal

2i are calculated energies of first peak and second peak 
respectively. In the case of neural network, Ecal

1i = SE1
θ ,b(xi), and 

Ecal
2i = SE2

θ ,b(xi). For unimodal nuclei, we just take Ecal
2i = yE2

i = 0
in the calculation of σrms(E). For the case of unimodal nuclei mis-
judged as bimodal nuclei in theory, we only consider the first peak 
from theory in the comparison with experimental data; for the op-
posite case, we use Ecal

1i = Ecal
2i = Ecal

i . The rms deviations of GDR 
resonance widths by neural network σrms(�) are calculated in the 
same way as σrms(E).

The deformation parameters β2 in the input are a combination 
of experimental data [50] when available and finite-range liquid-
drop model (FRDM) results [51]. The experimental GDR parameters 
to be trained are taken from the results fitted by SLO model in In-
ternational Atomic Energy Agency Photonuclear Data Library 2019 
(IAEA2019) [1,8]. The nuclei with experimental errors σ exp < 1.5
MeV for the widths are considered. As a result there are 129 nu-
clei left and hence 366 data including GDR energies and widths, 
which compose the entire data set. In order to examine the va-
lidity of the MTL approach, we separate the entire data set into 
the learning set and the validation set with a ratio of about 9:1. 
The learning set is built by randomly selecting 116 nuclei from 
the entire set, and the remaining 13 nuclei compose the valida-
tion set. We have tested the sensitivity of the trained MTL model 
with respect to hyper-parameters, including learning rate and sizes 
of training and validation data-sets. By changing the learning rate 
from the optimal value 0.008 to 0.016 and 0.001, the change of rms 
deviations of GDR energies and widths from experimental data are 
generally within 9%. In addition, if we increase the data-set ra-
tio between validation and learning data-sets from 1:9 to 3:7, the 
change of rms deviations is still within 18%. Therefore, the results 
are not very sensitive to the hyper-parameters, which further im-
plies the reliability of the present networks to predict the GDR 
energies and widths.

In the results and discussions, we will compare the results from 
MTL approach with those from the GT model. The GT model is re-
ferring to the theoretical results used in RIPL-3 library [34]. It is 
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calculated based on the Goldhaber-Teller model [32] where the 
neutron and proton densities perform an out-of-phase vibration 
around their center of mass. The dynamics of the oscillation is as-
sumed to be dominated by the np-interaction [52]. The strength 
of np-interaction is derived from a least-square fit to the exper-
imental GDR energies [33]. The nucleon density distribution and 
ground-state deformation are taken from the Extended Thomas-
Fermi plus Strutinsky Integral (ETFSI) compilation [53]. The ex-
pression for the shell-dependent GDR width is taken from [54]
using the newly-determined GDR energies and the ETFSI shell cor-
rections. Compared to the network approach, the GT model has 
much less free parameters due to a clear physical picture. Being a 
completely different approach, the neural network is featured by a 
large number of connected parameters that extract the modular-
ized information from data. For the MTL networks, the numbers of 
parameters are 70 for Net1 and 140 for Net2. One way to assess if 
the parameter set is too big is to check if the network is overfit-
ted. We have checked that our neural networks are not overfitted 
by comparing the rms deviations between learning set and valida-
tion set, which give similar values for both data-sets. In addition, 
from the rms deviations of our results with respective to the data 
in learning set and validation set, it is also found that the present 
networks give the best results compared to other networks with 
fewer or more parameters.

3. Results and discussions

In Fig. 2, the root-mean-square (rms) deviations of GDR peak 
energies and resonance widths with respect to experimental data 
for results from GT model and MTL networks are compared. To 
analyze these results in details, the comparisons are done for uni-
modal nuclei and bimodal nuclei in three mass regions respec-
tively. Generally, it is clearly seen that the MTL networks improved 
both GDR peak energies and resonance widths significantly com-
pared to GT model. For the peak energy, the rms deviation is 
reduced by 51.2% from GT model to MTL approach for all nuclei, 
while this number is 41.4% for resonance width. To understand the 
different levels of improvements for energies and widths, we fur-
ther check the results of Net1 and Net2 respectively. For unimodal 
nuclei, Net1 improves the rms deviation by 63.1% for energies and 
42.1% for widths, while for bimodal nuclei, Net2 improves the rms 
deviation by 31.6% for energies and 38.7% for widths, seen in Fig. 2. 
The improvement for energy in Net1 is much bigger than that for 
widths, in fact due to that the GT model gives a very poor descrip-
tion of energies for unimodal nuclei, which will be discussed in 
more details in panel (a) of Fig. 2 and Fig. 3.

Compared among different mass regions, the most significant 
improvement happens in the intermediate mass region 80 ≤ A <
170, due to the right classification of unimodal and bimodal nu-
clei in MTL approach, which will be discussed in details in Fig. 3
and Fig. 4. The second big improvement is in the light mass region 
A < 80, where the GT model gives the worst results compared to 
other mass regions. Based on the picture that protons and neutrons 
oscillate with each other, this classical model does not perform 
well for light nuclei. The MTL networks can overcome this prob-
lem to large extent, and give similar accuracies for the description 
of A < 80 nuclei and heavier nuclei, except for the unimodal nu-
clei in light mass region. The relative poor description of unimodal 
nuclei with A < 80 is still due to the fact that the collectivity of 
light nuclei is not as strong as that in heavier nuclei and thus shell 
effects tend to play their roles, leading to less good systematics in 
light nuclei, seeing Fig. 3 and Fig. 4.

In panel (a) of Fig. 2, it is noticed that improvements by MTL 
approach are much larger for unimodal nuclei than that for bi-
modal nuclei in all mass regions. In other words, it is apparent that 
in the GT model, the description for bimodal nuclei is better than 
4

Fig. 2. The root-mean-square (rms) deviations of GDR (a) peak energies and (b) 
resonance widths with respect to experimental data from the IAEA library [1] for 
results from GT model [34] and MTL networks. The data set is divided into three 
mass regions, and further classified by one-component Lorentzian (unimodal) nuclei 
and two-component Lorentzian (bimodal) nuclei in each mass region.

Fig. 3. The key parameters of GDR, (a) peak energies and (b) resonance widths, as 
functions of nuclear mass number A, calculated by MTL networks (blue circle) and 
GT model [34] (cyan square), in comparison with experimental data from the IAEA 
library [1] (red diamond).

that for unimodal nuclei, while in MTL approach, the descriptions 
of unimodal and bimodal nuclei reach similar accuracy except for 
light mass region with A < 80. This interesting phenomenon will 
be explained in Fig. 3.

The rms derivation of energies given by MTL approach is lower 
than 0.41 MeV, excluding the 24 unimodal nuclei with A < 80, 
which shows a great performance of MTL approach. For unimodal 
nuclei with A < 80, although the rms deviation of energies is 
higher, which is 0.70 MeV, it still obtains big improvement com-
pared to the GT model. For the widths, the rms deviation is larger 
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Fig. 4. The key parameters of GDR (a) peak energies and (b) resonance widths of 
the unimodal nuclei misjudged by GT model, calculated by MTL networks (blue cir-
cle) and GT model [34] (cyan square), in comparison with experimental data from 
the IAEA library [1] (red diamond). The same isotopes are linked by lines with the 
corresponding proton number shown aside, and the same isotones of N = 28 are 
also linked.

than that for energies in general, both for GT model and MTL ap-
proach, since widths have more complicated physical origins and 
worse systematics compared to energies. For MTL approach, the 
larger error bar of experimental data for GDR widths (seeing Fig. 3) 
leads to smaller weights through Eq. (11) and (12) in the training 
process, and as a result, it further causes the worse description for 
GDR widths than for energies.

In Fig. 3, GDR energies and widths as functions of nuclear mass 
number calculated by MTL networks and GT model are shown, in 
comparison with experimental data from the IAEA library [1]. It is 
clear that generally GDR peak energies (E) have good systematics 
with nuclear mass number A, which are approximately propor-
tional to A−1/3, as told in textbook. However, for resonance widths, 
there is no clear evolution trend with mass number. It is also ap-
parent that the experimental errors of resonance widths are much 
larger than that for peak energies. In the process of training net-
works, we take into account the experimental errors as the weights 
of data, which leads to smaller weights of resonance widths than 
that of peak energies. Together with the bad systematics, the learn-
ing of resonance widths is not as good as that of peak energies.

Comparing between two calculation results, it is clear that neu-
ral networks give better results than GT model does, especially 
for mass region with A < 150. The large discrepancy between GT 
model and experimental data mainly exist in those nuclei where 
the GT model gives double peaks for GDR instead of only a sin-
gle peak from experimental data, which can be seen in Fig. 4 for 
details. On the contrary, the neural networks give right classifica-
tion of unimodal nuclei and bimodal nuclei. This can be seen in 
Table 1, where the accuracies of classification of unimodal nuclei 
and bimodal nuclei for neural network approach and GT model 
in different mass regions are shown. For nuclei with A < 170
the neural network approach largely improves the accuracies of 
classification of unimodal nuclei and bimodal nuclei, leading to 
a great improvement in comparison with experimental data, be-
ing consistent with the results in Fig. 2. This also explains the 
5

Table 1
The accuracies of classification of unimodal nuclei and bimodal nuclei for neural 
network approach and GT model in different mass regions.

A < 80 80 ≤ A < 170 170 ≤ A < 240 all

GT 60.0% 72.7% 97.1% 77.2%
Net0 97.4% 98.2% 100.0% 98.5%

more considerable improvement by MTL approach for unimodal 
nuclei than that for bimodal nuclei observed in panel (a) of Fig. 2. 
The wrong classification of unimodal nuclei and bimodal nuclei in 
GT model influences more peak energies than resonance widths, 
so the improvements by MTL are more apparent for energies of 
unimodal nuclei in Fig. 2(a) than for widths in Fig. 2(b). In GT 
model, the GDR splits into two peaks for oscillations parallel to 
the axis of rotational symmetry and perpendicular to it in case 
of deformed nuclei. However, the wrong classification of unimodal 
nuclei and bimodal nuclei shows that the nuclear shape is not con-
sidered accurately in this model. Actually this is a general problem 
for phenomenological models. For example, in some empirical for-
mulas in SLO method [14], the classification of unimodal nuclei 
and bimodal nuclei depends on quadrupole deformation parame-
ter β2, where the nucleus is considered as an unimodal nucleus 
when β2 < 0.01 [34], and a bimodal nucleus otherwise. So it is 
important for the description of GDR if the value of β2 reflects 
the deformation of nucleus correctly, which is not always obvious. 
The general shape of deformed nuclei is an axially symmetric pro-
late or oblate ellipsoid with a deformation parameter β2, which is 
defined by expanding the nuclear surface in spherical harmonics 
R(�) ≈ R0(1 + β2Y20(�)), reflecting the difference between the 
nuclear radii along (R‖) and perpendicular (R⊥) to the symme-
try axis [55,56]. Experimentally, the deformation parameter β2 is 
extracted from the experimental reduced electric quadrupole tran-
sition probability B(E2) value through β2 = (4π/3Z R2

0)[B(E2) ↑
/e2]1/2, where R0 = 1.2A1/3 fm [57]. However, to indicate the 
presence of collective quadrupole effects in nuclei, this way to ex-
tract β2 is sometimes less useful because it includes effects which 
vary with the size of nucleus (larger β2 for light nuclei) [57]. So 
the β2 extracted this way does not always reflect the nuclear shape 
accurately, especially for light mass nuclei. On the other hand, by 
considering the dipole oscillation as a standing wave in a res-
onator, the oscillation frequency along the axes that is parallel to 
(K = 0) and perpendicular to (K = 1) the symmetry axes is dif-
ferent, which is proportional to 1/R‖ and 1/R⊥ , respectively, so 
that the splitting of these two frequencies 	E ∝ β2 [56,58], reflect-
ing more accurately about nuclear shape. For example, for doubly 
magic nucleus 16O, it is considered as a spherical nucleus, which 
is reflected by the single peak of GDR observed from experiment 
[1], although its experimental β2 = 0.364 [34].

In Fig. 4, we further list the misjudged nuclei by GT model, 
where the unimodal nuclei are considered as bimodal nuclei in GT 
model. The corresponding proton number of isotopes or neutron 
number of isotones is marked in Fig. 4. It can be seen that these 
proton or neutron numbers are either (close to) magic numbers, 
such as 18 and 22 near 20, 28 and its neighbor 29, 50, and 79 
near 82, or (close to) closed shells, such as 32, 40, 58 and 64. The 
nucleus with proton or neutron number close to magic number or 
big shell closure tends to have a spherical shape, and correspond-
ingly the peak of GDR should not be split, which agrees with the 
experimental observation. So in our approach, we first establish 
a classification neural network (Net0), with not only experimental 
β2 but also proton number Z , neutron number N and mass num-
ber A in the input layer. As a consequence, the accuracy of Net0
for classification of unimodal nuclei and bimodal nuclei can reach 
about 98% with 98.3% for learning set and 92.8% for validation set. 
Thus, based on precise classification and combined with the MTL 
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Fig. 5. The photoabsorption cross sections of 96,98,100Mo and 194,195,196Pt obtained by SLO method using GDR key parameters from MTL networks (dot-dashed blue), GT model 
[34] (dashed green), and IAEA library [1] (solid red). The experimental data of photoabsorption cross sections are also shown for comparison. These nuclei are included in 
the learning set.

Fig. 6. Similar to Fig. 5 but for nuclei 126Te, 141Pr, 144Sm, 59Co, 150Nd and 165Ho which are included in the validation set.
method, the description of GDR parameters has been improved ob-
viously by networks, especially for unimodal nuclei.

With the GDR key parameters, one can obtain the photoabsorp-
tion cross sections through SLO method, as introduced in Section 2. 
So in Fig. 5, we plot the photoabsorption cross sections obtained 
by SLO method using GDR key parameters from MTL networks, 
GT model, and IAEA library. Since in the neural network approach, 
only energies and widths are studied, so here we still use s j from 
evaluated data [1]. The original experimental data are also shown 
for comparison. Here we choose the unimodal isotopes 96,98,100Mo 
and bimodal isotopes 194,195,196Pt in the learning set of our neu-
ral networks as examples. The results obtained by GDR parame-
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ters evaluated in IAEA library through SLO method have excellent 
agreement with the experimental data, especially in the GDR re-
gion. It further proofs that using IAEA evaluated data of GDR key 
parameters as neural networks’ learning targets is good enough 
for describing photoabsorption cross sections. For the unimodal 
Mo isotopes, GT model considers them as bimodal nuclei inaccu-
rately, leading to a big deviation from experimental data. The MTL 
networks give a good description of experimental data via right 
classification. For bimodal nuclei, although GT model gives a bet-
ter performance than it does for unimodal nuclei, one still can see 
the clear improvement by MTL networks.
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To check the extrapolation ability of MTL networks, we further 
study those nuclei in the validation set which are not taken into 
the learning progress. So in Fig. 6, the photoabsorption cross sec-
tions of 3 unimodal nuclei 126Te, 141Pr and 144Sm, and 3 bimodal 
nuclei 59Co, 150Nd and 165Ho in validation set are shown. It can be 
seen even for these nuclei in the validation set, the MTL networks 
still give a good prediction for the GDR key parameters. This re-
sult shows our ability for extrapolation, as well as the usefulness 
of our study for predicting photoabsorption cross sections, espe-
cially for nuclei with few experimental data points, e.g. in panel 
(c), (e) and (f).

Based on the good performance in the validation set, we do fur-
ther extrapolation of our approach to nuclei not included in IAEA 
library. Considering the reliability of extrapolation, we predict an-
other 79 nuclei around the β-stability line, since in the learning set 
only stable nuclei are included. These nuclei have no experimental 
data. The predicted peak energies and resonance widths of these 
nuclei are shown in Table 2 in appendix. There are 51 nuclei with 
unimodal distribution and 28 nuclei with bimodal distribution. 
This table provides a good reference for future data evaluations.

4. Summary

We introduced the MTL neural network approach to learn and 
predict GDR key parameters for the first time. The accuracy for the 
description of GDR key parameters is improved considerably com-
pared to the theoretical GDR parameters calculated by GT model 
in RIPL-3. Especially, compared with GT model, for the GDR en-
ergies and widths of unimodal nuclei, the accuracies of MTL are 
about doubled; for the bimodal nuclei, the accuracies of MTL are 
increased by about one third. For the GDR energies of unimodal 
nuclei, the improvement by MTL is even more significant, which 
is due to the correct classification of unimodal and bimodal nu-
clei in the neural network approach. In GT model, the nuclear 
deformation is not considered accurately, resulting double peaks 
of GDR in some spherical nuclei with proton or neutron number 
close to magic number. The neural network approach overcomes 
this problem by introducing a network that classify the unimodal 
and bimodal nuclei, with an accuracy of about 98%. Based on the 
good performance of both learning set and validation set of neu-
ral network approach, an extrapolation to 79 nuclei around the 
β-stability line without experimental data is made, which provides 
an important reference to future experiments and data evaluations.

As an improvement to the present work, to learn and predict 
experimental data of photoabsorption cross section directly using 
BNN approach is under progress. In addition, the successful ap-
plication of MTL approach in this work shows the feasibility of 
studying multi-output physical problems, so this approach can be 
generalized to other nuclear physics problems with multi-outputs.
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Appendix A. Predictions

Table 2
Predictions of GDR key parameters including peak energies and resonance widths 
for nuclei without experimental data.

Element β2 E1 �1 E2 �2

20Ne 0.364 23.016 5.738
21Ne 0.372 18.188 2.729 20.844 4.430
22Ne 0.384 16.938 2.857 21.328 5.102
31P 0.218 23.000 6.879
33S 0.209 22.766 7.027
35Cl 0.234 21.953 7.383
37Cl 0.011 21.438 5.836
36Ar 0.255 19.938 9.977
38Ar 0.000 21.120 5.805
39K 0.032 20.969 5.918
41Ca 0.021 20.453 5.855
43Ca 0.011 16.313 4.066 25.047 5.168
45Sc 0.043 19.734 5.859
47Ti 0.053 17.531 4.227 20.984 3.768
49Ti 0.053 16.984 4.031 20.344 5.500
50Cr 0.194 19.469 6.531
53Mn 0.021 16.750 3.918 19.891 6.555
56Fe 0.117 16.406 3.232 19.422 6.898
57Fe 0.162 16.406 3.230 19.422 6.898
61Ni 0.107 16.406 3.232 19.422 6.898
62Ni 0.107 16.406 3.232 19.422 6.898
66Zn 0.176 17.516 5.609
67Zn 0.176 17.406 5.598
68Zn 0.136 17.266 5.336
69Ga 0.177 17.297 5.523
71Ga 0.207 17.000 5.785
83Kr 0.129 16.641 5.016
84Kr 0.086 16.641 4.758
85Rb 0.064 16.672 4.625
86Sr 0.000 16.660 4.438
87Sr 0.043 16.656 4.527
88Sr 0.000 16.620 4.426
97Mo 0.172 15.938 5.879
99Tc 0.194 15.859 6.340
101Ru 0.195 15.836 6.387
102Ru 0.206 15.789 6.637
104Pd 0.173 15.906 5.977
105Pd 0.174 15.805 6.039
106Pd 0.185 15.719 6.207
107Pd 0.195 15.656 6.316
110Cd 0.152 15.711 5.762
111Cd 0.162 15.617 5.844
113Cd 0.185 15.484 5.977
121Sb 0.125 15.367 5.164
123Te 0.146 15.320 5.301
125Te 0.125 15.242 4.992
129Xe 0.162 15.148 5.664
131Xe 0.125 15.102 5.031
132Xe 0.125 15.055 5.078
134Ba 0.125 15.117 5.051
135Ba 0.125 15.070 5.094
136Ba 0.021 15.219 4.527
137Ba 0.053 15.102 4.363
147Sm 0.140 14.930 5.547
149Sm 0.183 14.539 6.379
155Gd 0.249 12.563 2.732 15.719 6.078
157Gd 0.271 12.266 2.586 15.805 5.930
161Dy 0.271 12.250 2.674 15.773 5.699
163Dy 0.283 12.211 2.936 15.680 4.828
167Er 0.297 12.211 3.053 15.617 4.313
171Yb 0.299 12.211 3.068 15.602 4.234
173Yb 0.300 12.211 3.076 15.594 4.199
210Pb 0.000 13.600 3.700
212Bi 0.011 13.594 3.752
213Bi 0.010 13.586 3.736
214Bi 0.010 13.578 3.727
216Bi 0.046 13.578 3.920
218Po 0.056 13.578 3.992
221Rn 0.110 13.063 2.617 13.883 5.684
222Rn 0.110 13.039 2.598 13.797 5.594
223Fr 0.132 12.719 2.451 13.047 4.488
223Ra 0.132 12.734 2.463 13.086 4.555
224Ra 0.143 12.555 2.275 12.695 3.609
225Ra 0.154 12.359 1.953 12.383 2.930
226Ra 0.164 12.109 1.504 12.211 3.057
227Ac 0.164 12.078 1.466 12.125 3.012
228Th 0.174 11.789 0.979 12.203 3.799
229Th 0.184 11.461 0.680 12.531 4.699
230Th 0.195 11.180 0.964 13.117 5.313
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[21] N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67 (2003) 034312.
[22] N. Paar, D. Vretenar, E. Khan, G. Colò, Rep. Prog. Phys. 70 (2007) 691–793.
[23] D. Gambacurta, M. Grasso, F. Catara, Phys. Rev. C 81 (2010) 054312.
[24] M. Grasso, D. Gambacurta, Phys. Rev. C 101 (2020) 064314.
[25] E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 75 (2007) 064308.
[26] I.A. Egorova, E. Litvinova, Phys. Rev. C 94 (2016) 034322.
[27] X. Roca-Maza, Y.F. Niu, G. Colò, P.F. Bortignon, J. Phys. G, Nucl. Part. Phys. 44 

(2017) 044001.
[28] D.M. Brink, Ph.D. thesis, Oxford University, 1955.
[29] P. Axel, Phys. Rev. 126 (1962) 671–683.
[30] V.A. Plujko, S.N. Ezhov, M.O. Kavatsyuk, et al., J. Nucl. Sci. Technol. 2 (2002) 

811.

[31] V.A. Plujko, I.M. Kadenko, E.V. Kulich, et al., in: Proc. Czech Republic 17-20, 
2007.

[32] M. Goldhaber, E. Teller, Phys. Rev. 74 (1948).
[33] S. Goriely, Phys. Lett. B 436 (1998) 10–18.
[34] RIPL-3, https://www-nds .iaea .org /RIPL-3/.
[35] Z.M. Niu, H.Z. Liang, Phys. Lett. B 778 (2018) 48–53.
[36] Z.M. Niu, J.Y. Fang, Y.F. Niu, Phys. Rev. C 100 (2019) 054311.
[37] R. Utama, J. Piekarewicz, H.B. Prosper, Phys. Rev. C 93 (2016) 014311.
[38] L. Neufcourt, Y.C. Cao, W. Nazarewicz, F. Viens, Phys. Rev. C 98 (2018) 034318.
[39] Z.A. Wang, J.C. Pei, Y. Liu, Y. Qiang, Phys. Rev. Lett. 123 (2019) 122501.
[40] Z.M. Niu, H.Z. Liang, B.H. Sun, W.H. Long, Y.F. Niu, Phys. Rev. C 99 (2019) 

064307.
[41] Z.M. Niu, H.Z. Liang, B.H. Sun, Y.F. Niu, J.Y. Guo, J. Meng, Sci. Bull. 63 (2018) 

759.
[42] Z.M. Niu, B.H. Sun, H.Z. Liang, Y.F. Niu, J.Y. Guo, Phys. Rev. C 94 (2016) 054315.
[43] N.J. Costiris, E. Mavrommatis, K.A. Gernoth, J.W. Clark, Phys. Rev. C 80 (2009) 

044332.
[44] N.J. Costiris, E. Mavrommatis, K.A. Gernoth, J.W. Clark, arXiv:1309 .0540, 2013.
[45] R. Caruana, Mach. Learn. 28 (1997) 41–75.
[46] Y. Zhang, Q. Yang, arXiv:1707.08114, 2017.
[47] M.B. Chadwick, P. Obloz̆inský, A.I. Blokhin, et al., Tech. Rep. IAEATECDOC-1178, 

International Atomic Energy Agency, Vienna, Austria, 2000.
[48] M.B. Chadwick, P. Obloz̆inský, P.E. Hodgson, G. Reffo, Phys. Rev. C 44 (1991) 

814–823.
[49] D.P. Kingma, J. Ba, arXiv:1412 .6980, 2014.
[50] RIPL-2, https://www-nds .iaea .org /RIPL-2 /masses .html.
[51] P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109–110 

(2016) 1–204.
[52] P. Van Isacker, et al., Phys. Rev. C 45 (1992) R13.
[53] Y. Aboussir, J.M. Pearson, A.K. Dutta, F. Tondeur, At. Data Nucl. Data Tables 61 

(1995) 127.
[54] F.K. Thielemann, M. Arnould, in: Proc. Int. Conf. on Nucl. Data for Science and 

Technology, 1983, p. 762.
[55] A. Bohr, B.R. Mottelson, Nuclear Structure, and Edition, Vol. II, W. A. Benjamin 

Inc., New York, 1998.
[56] M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental High Fre-

quency Modes of Nuclear Excitation, Oxford University Press, Oxford, 2001.
[57] S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78 (2001) 1–128.
[58] J. Speth, A. van der Woude, Rep. Prog. Phys. 44 (1981) 719.
8

http://refhub.elsevier.com/S0370-2693(21)00087-3/bibAB8B9E8246CF90AB3BAD218C47769D6Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibAB8B9E8246CF90AB3BAD218C47769D6Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib3FD256D023FC0E30F5BBE41756BEB25Cs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibB1375220A9722AEB5FD2B7D29CA7D471s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibE7A586F6A4DD59F716C11F53C0E8E239s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib78300A17A8918F858A3C605C78615B46s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib51BB9B74A2240134961699B847CEB20Es1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib51BB9B74A2240134961699B847CEB20Es1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5FC9EB4D95577CC598B9A9A2913563E6s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5505AB77FA7FEBF58E9857A35E7CE52Ds1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib800E6DE328F8A86C1E30CA9B7CA400EDs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib9F9D60CB0BB9F731A9C4A10E590085CEs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibA0F2931756E029849ACA252F2A46B5F7s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibA0F2931756E029849ACA252F2A46B5F7s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib3925A2C44B16EAABB7A18BBCFBCA538Bs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibDA79F85E231881CC8D5E31C5FA3FDAB2s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibDA79F85E231881CC8D5E31C5FA3FDAB2s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib941D65F486A503FCBE20D2EFAE345425s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib941D65F486A503FCBE20D2EFAE345425s1
http://www.nuclear.csdb.cn/index.html
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib134A6A9620FB4B24ED7BE659BDA04C2Ds1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib127E52E61FF66AFD4AE4BBCECA5026DEs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibB391061997818299045EA684DCAB76CFs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibE755AB09014535F034EC74A18728E1E9s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib0D894854446B42B19604AE8019ACBE94s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib221C3D43ED9BEC7E37EC1877B116E6FDs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib27B41FC45517EDFFA9DD5C62EBD0B563s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib82C2893A386BAEF577B5C1C275D5F835s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib205A29694D195A72DCC011F1156F75BCs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib9C7A1C885FF668F8FCF4B3A99EF00B24s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib0AA3CF81EEC7AC752B21643F44CD21D7s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib7D72234B2FDA63495051DD5636A39223s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib7D72234B2FDA63495051DD5636A39223s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib0CBB087189C92F4FFE97C06402E5325Es1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibF54D42E700C60AACF9ECCDBEC65BF843s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib38D4406E9D7B2462D3E851B3299FD014s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib38D4406E9D7B2462D3E851B3299FD014s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib06E4D5D96ED2A8231865D1D77B6D449Cs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib06E4D5D96ED2A8231865D1D77B6D449Cs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib75E548227B003335DB8E2FBAC45AF54As1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibF2DBC4A7BFE04BD6D620C362705826C6s1
https://www-nds.iaea.org/RIPL-3/
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib1B3F927E0A4CEBDCF2EFB57E661165E5s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5B5C3EEB37AC0DD3E55491E3465D948Es1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5FAD356992C9D604ECC4B5513223F983s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib311F0C8549D52F6D8566F3836A7FD12As1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib191DE830D2166644120A089DA432D7F4s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibAB6F51A95E94E2F7653153E17E745E1Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibAB6F51A95E94E2F7653153E17E745E1Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibEDF99DD7FCD71A6FA7F5FB01E506FE75s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibEDF99DD7FCD71A6FA7F5FB01E506FE75s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibF0FAEE78C7519BF529BFFED91F74E013s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibEC553452EF84E542D0910F28309796FCs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibEC553452EF84E542D0910F28309796FCs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibF4EEF56868A65DE905209274BF8B14D9s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib450CC6E327F63EC0E248911848A48B9Ds1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibB6ACEC5FA2E275C5C42D2F1DBA8A1510s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibD2A2F5864DE587853F91DE8F6845FD7Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibD2A2F5864DE587853F91DE8F6845FD7Fs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib78CDDF0F83DCCC2E03A9C9EB3D65FA86s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib78CDDF0F83DCCC2E03A9C9EB3D65FA86s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
https://www-nds.iaea.org/RIPL-2/masses.html
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib1B11C74B4E52661D49812F83B1D1F9F8s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib1B11C74B4E52661D49812F83B1D1F9F8s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib3C0C11514CB62A0EC410EF260DFA891Bs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5AF61A320529CA655D0B16B8360F32A6s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib5AF61A320529CA655D0B16B8360F32A6s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib576AEF39FB20DA9E13183440005FE5EEs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib576AEF39FB20DA9E13183440005FE5EEs1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib98ECD08F66512AC284D82924FE3B6505s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib98ECD08F66512AC284D82924FE3B6505s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib86B2ACCDBBFA5FFA4E092C03448BA22As1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bib86B2ACCDBBFA5FFA4E092C03448BA22As1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibF0BDF70706FCD9FD79E62826B4D3AC57s1
http://refhub.elsevier.com/S0370-2693(21)00087-3/bibC7D6C3C0B8A5839B162ED300870E3D42s1

	The description of giant dipole resonance key parameters with multitask neural networks
	1 Introduction
	2 The models
	3 Results and discussions
	4 Summary
	Declaration of competing interest
	Acknowledgement
	Appendix A Predictions
	References


