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Unified nuclear matter equations of state constrained by the in-medium balance
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Considering the effects of charge screening, we propose a new numerical recipe within the framework of the
Thomas-Fermi approximation, where the properties of nuclear matter throughout a vast density range can be
obtained self-consistently. Assuming spherical and cylindrical approximations for the Wigner-Seitz cell, typical
nuclear matter structures (droplet, rod, slab, tube, bubble, and uniform) are observed. We then investigate
the equations of state and microscopic structures of nuclear matter with both fixed proton fractions and β

equilibration, where two covariant density functionals, DD-LZ1 and DD-ME2, are adopted. Despite the smaller
slope L of symmetry energy obtained with the functional DD-LZ1, the curvature parameter Ksym is much larger
than that of DD-ME2, which is attributed to the peculiar density-dependent behavior of meson-nucleon couplings
guided by the restoration of pseudospin symmetry around the Fermi levels in finite nuclei. Consequently,
different mass-radius relations of neutron stars are predicted by the two functionals. Different microscopic
structures of nonuniform nuclear matter are obtained as well, which are expected to affect various physical
processes in neutron star properties and evolutions.
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I. INTRODUCTION

The equation of state (EOS) for dense stellar matter was
shown to play important roles in the properties of cold neutron
stars, the evolution of proton-neutron stars, the dynamics of
core-collapse supernovae, the formation of black holes, and
binary neutron star mergers [1–15]. Nevertheless, due to the
lack of understanding for strongly interacting matter at large
densities, there are still large ambiguities on the compositions
and structures of dense stellar matter, which leads to the un-
certainties in the corresponding EOSs [16,17]. In particular,
even for cases without involving any new degrees of free-
dom (heavy baryons, mesons, or quarks), the uncertainties
in the nuclear energy density functional are still significant
at large densities and isospin asymmetries [18–20], which in
turn affects our understanding of the properties and dynamic
evolutions of compact stars.

Since it is still challenging to simulate dense matter with
lattice QCD, a current viable strategy is to constrain the
properties of nuclear matter based on both nuclear and astro-

*cjxia@yzu.edu.cn
†sunby@lzu.edu.cn
‡maruyama.toshiki@jaea.go.jp
§longwh@lzu.edu.cn
‖liang@xmu.edu.cn

physical studies. For example, according to various terrestrial
experiments and nuclear theories, the nuclear matter prop-
erties around the saturation density (n0 ≈ 0.16 fm−3) are
well constrained with binding energy B ≈ −16 MeV, incom-
pressibility K = 240 ± 20 MeV [21], symmetry energy S =
31.7 ± 3.2 MeV, and its slope L = 58.7 ± 28.1 MeV [22,23].
A recent measurement with PREX-II suggests that the neutron
skin thickness for 208Pb is �Rnp = 0.283 ± 0.071 fm, which
yields L = 106 ± 37 MeV [24]. Meanwhile, the observation
of two-solar-mass pulsars [25–29] and the simultaneous mea-
surements of the masses and radii for PSR J0030+0451 and
PSR J0740+6620 via pulse-profile modeling [30–33] have
put strong constraints on the EOSs of dense stellar matter.
The multimessenger observations of the binary neutron star
merger event GRB 170817A-GW170817-AT 2017gfo have
placed the tidal deformability of 1.4M� neutron star within
70 � �1.4 � 580 [34]. A combination of those constraints
and the heavy ion collision data suggests K = 250.23 ± 20.16
MeV, S = 31.35 ± 2.08 MeV, and L = 59.57 ± 10.06 MeV
[35], while including PREX-II and chiral effective field the-
ory constraints yields S = 33.0+2.0

−1.8 MeV and L = 53+14
−15 MeV

[36].
Relativistic-mean-field (RMF) models [37] have been very

successful in describing finite nuclei [37–46] and nuclear
matter [47–54]. Thus in this work we adopt the RMF model
to investigate the properties of dense stellar matter. Ac-
cording to the self-energies obtained in Dirac-Brueckner

2469-9985/2022/105(4)/045803(14) 045803-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3388-1137
https://orcid.org/0000-0001-8958-9787
https://orcid.org/0000-0002-3245-765X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.045803&domain=pdf&date_stamp=2022-04-13
https://doi.org/10.1103/PhysRevC.105.045803


XIA, SUN, MARUYAMA, LONG, AND LI PHYSICAL REVIEW C 105, 045803 (2022)

calculations, starting from realistic nucleon-nucleon interac-
tions, the density-dependent nucleon-meson coupling con-
stants were introduced in the RMF model to account for the
in-medium effects in nuclear matter [44,55], which bypasses
the problems of stability at large densities typically observed
in traditional nonlinear RMF models.

To improve the density-dependent behavior and give a
better extrapolation of nuclear matter properties at large
densities and isospin asymmetries, a new RMF Lagrangian
DD-LZ1 guided by the restoration of pseudospin symmetry
(PSS) was recently developed [56]. The PSS corresponds to
a quasidegeneracy between the two single-particle orbitals
(n, l, j = l + 1/2) and (n − 1, l + 2, j = l + 3/2) in finite
nuclei [57,58], which is attributed to the relativistic sym-
metry with a delicate balance between the nuclear attractive
(scalar) and repulsive (vector) potentials [59,60]. Although
RMF models well accommodate the PSS observed in stable
nuclei [59], the PSS is often violated for the high-l orbitals
in the vicinity of the Fermi surface, leading to spurious shell
closures at N/Z = 58 and 92. This problem can be solved if
the RMF Lagrangian DD-LZ1 is adopted, where new density-
dependent meson-nucleon coupling strengths were introduced
[56]. It was shown that both the bulk properties of nuclear
matter and finite nuclei are well described by the new RMF
Lagrangian DD-LZ1. Meanwhile, the predicted density slope
of nuclear symmetry energy within DD-LZ1 agrees with the
experimental constraints, but a little softer than DD-ME2.
In this work we thus adopt the covariant density functional
DD-LZ1 [56] to investigate the EOS of cold nuclear matter,
expecting a better extrapolation towards large densities and
isospin asymmetries. To show the variations in adopting the
new density-dependent meson-nucleon coupling strengths,
the obtained results are then compared with those of DD-ME2
[61].

Due to the lack of knowledge for the nuclear energy density
functionals, the uncertainties in the EOSs and microscopic
structures of neutron star matter are still significant [62–73].
Additional uncertainties will be introduced if the EOSs were
not obtained in a unified manner [67,72]. Particularly, the
importance of a consistent calculation of nuclear functional
was emphasized in Ref. [72], where using a surface ten-
sion that is inconsistent with the bulk functional would lead
to an underestimation of both the average values and the
uncertainties in the pasta properties. In this work we thus
investigate the EOSs of cold nuclear matter as well as the cor-
responding microscopic structures in a unified manner, where
the surface, curvature, and bulk contributions are obtained
self-consistently from one single covariant energy density
functional. For the nonuniform structures of nuclear matter,
we adopt the Thomas-Fermi approximation (TFA) and search
for the ground state among the five types of nuclear matter
structures (droplet, rod, slab, tube, and bubble) [74–80] where
the spherical and cylindrical approximations were imposed.
The properties of nuclear matter are obtained with RMF mod-
els adopting the covariant density functionals DD-LZ1 [56]
and DD-ME2 [61].

The paper is organized as follows. In Sec. II we present
our theoretical framework of the RMF model. The numerical
details on obtaining the EOSs and microscopic structures of

nuclear matter are discussed in Sec. III. The obtained results
on the EOSs and microscopic structures of nuclear matter as
well as the implications for the structures of neutron stars are
presented in Sec. IV. Our conclusion is given in Sec. V.

II. RMF MODEL

In the mean-field approximation (MFA), the Lagrangian
density of RMF models [37] for systems with time-reversal
symmetry reads

L =
∑
i=n,p

ψ̄i[iγ
μ∂μ − γ 0(gωω + gρρτi + Aqi ) − M∗]ψi

+
∑

l=e,μ

ψ̄l [iγ
μ∂μ − ml + eγ 0A]ψl − 1

4
AμνAμν

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

4
ωμνω

μν + 1

2
m2

ωω2

− 1

4
ρμνρ

μν + 1

2
m2

ρρ
2, (1)

where τi represents the third component of isospin for nucleon
i, qi the charge (qp = e, qn = 0, qe = qμ = −e), and M∗ ≡
M + gσ σ the effective nucleon mass. The meson fields σ , ω,
and ρ take mean values with the field tensors ωμν , ρμν , and
Aμν vanishing, except for

ωi0 = −ω0i = ∂iω, ρi0 = −ρ0i = ∂iρ, Ai0 = −A0i = ∂iA.

Based on the Typel-Wolter ansatz [44], the density depen-
dence of the coupling constants gξ (ξ = σ , ω) and gρ are
obtained with

gξ (nb) = gξ (n0)aξ

1 + bξ (nb/n0 + dξ )2

1 + cξ (nb/n0 + eξ )2
, (2)

gρ (nb) = gρ (0) exp [−aρ (nb/n0)], (3)

where nb = ∑
i=n,p ni represents the baryon number density

of nuclear matter, with n0 being the saturation density.
Carrying out standard variational procedure, the equa-

tions of motion are then determined by( − ∇2 + m2
σ

)
σ + gσ ns = 0, (4)( − ∇2 + m2

ω

)
ω − gωnb = 0, (5)

( − ∇2 + m2
ρ

)
ρ −

∑
i=n,p

gρτini = 0, (6)

∇2A + e(np − ne − nμ) = 0. (7)

In this work we adopt TFA and consider only zero-
temperature cases. The local nucleon scalar and vector
densities are then obtained with

ns =
∑
i=n,p

〈ψ̄iψi〉 =
∑
i=n,p

M∗3

2π2
g
( νi

M∗
)
, (8)

ni = 〈ψ̄iγ
0ψi〉 = ν3

i

3π2
, (9)

where νi is the Fermi momentum and g(x) = x
√

x2 + 1 −
arcsh(x). The total energy of the system is then fixed by

E =
∫

〈T00〉d3r, (10)
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with the energy momentum tensor

〈T00〉 = E0 + 1
2 (∇σ )2 + 1

2 m2
σ σ 2 + 1

2 (∇ω)2 + 1
2 m2

ωω2

+ 1
2 (∇ρ)2 + 1

2 m2
ρρ

2 + 1
2 (∇A)2. (11)

Adopting no-sea approximation, the local kinetic energy den-
sity is determined by

E0 =
∑

i

m∗
i

4

8π2

[
xi

(
2x2

i + 1
)√

x2
i + 1 − arcsh(xi )

]
, (12)

where xi ≡ νi/m∗
i with m∗

n = m∗
p ≡ M + gσ σ , m∗

e = me =
0.511 MeV, and m∗

μ = mμ = 105.66 MeV.
By minimizing the total energy E with respect to the den-

sity profiles ni at fixed total particle numbers Ni = ∫
nid3r,

one obtains the ground state, which follows the constancy of
chemical potentials, i.e.,

μi(�r)=
√

νi
2 + m∗

i
2 + �R + gωω + gρτiρ + qiA = constant,

(13)
with the additional “rearrangement” term

�R = dgσ

dnb
σns + dgω

dnb
ωnb + dgρ

dnb
ρ

∑
i

τini (14)

due to the density-dependent coupling constants adopted here
[81].

III. NUMERICAL DETAILS

Nuclear matter at various densities, temperatures, and
isospin asymmetries exhibits at least two phases, i.e., the
liquid and gas phases [82,83]. Cold neutron star matter with
densities nb � 0.08 fm−3 is expected to be in a uniform liquid
phase, which is typically found in the core region of tradi-
tional neutron stars. At nb � 0.08 fm−3, coexistence of the
liquid phase and neutron gas takes place and exhibits various
nonuniform structures [84–88], which are usually referred to
as nuclear pasta and comprised of the inner crust of a neutron
star or the core of supernovae at the stage of gravitational
collapse. Adopting spherical and cylindrical approximations
for the Wigner-Seitz (WS) cell [74,89–92], aside from the uni-
form phase, five types of pasta structures were observed, i.e,
droplet, rod, slab, tube, and bubble. Meanwhile, more compli-
cated structures may emerge if the spherical and cylindrical
approximations are not imposed [77,80,93–104]. At densities
smaller than neutron drip density (nb � 0.0003 fm−3), the
neutron gas vanishes and neutron star matter is comprised of
finite nuclei in Coulomb lattices, which form the outer crusts
of neutron stars as well as white dwarfs.

We thus divide the current section into two parts, i.e., the
uniform nuclear matter in Sec. III A and the nonuniform one
with two different density regions in Sec. III B. For both cases,
the covariant density functionals DD-LZ1 [56] and DD-ME2
[61] are adopted. Note that for the nonuniform nuclear matter,
the effects of charge screening were shown to affect the mi-
croscopic structures (shape, nuclear radius Rd , cell size RW,
etc.) of nuclear pasta [74], which is addressed in this work,
where the electrons move freely and fulfill the constancy of
chemical potential in Eq. (13).
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FIG. 1. Meson-nucleon couplings as functions of baryon number
density, which are adopted in the two covariant density functionals
DD-LZ1 [56] and DD-ME2 [61].

A. Uniform nuclear matter

For uniform nuclear matter, the mean fields and densities
are independent of the space coordinates, and then the deriva-
tive terms in the Klein-Gordon equations (4)–(7) vanish. At
given baryon number densities nb and proton fractions Yp ≡
np/nb, the meson fields are obtained by solving Eqs. (4)–(6)
with the density-dependent meson-nucleon couplings fixed by
Eqs. (2) and (3). The energy density and chemical potentials
are then determined by Eqs. (11) and (13). Note that the
Coulomb interaction is neglected for infinite nuclear matter,
i.e., we have assumed e = 0 in Eq. (7). For realistic neutron
star matter, the Coulomb interaction ensures the fulfillment
of the local charge neutrality condition with the inclusion of
leptons, i.e.,

np − ne − nμ ≡ 0. (15)

The density dependence of the coupling strengths adopted
in the covariant density functionals DD-LZ1 [56] and DD-
ME2 [61] are illustrated in Fig. 1. We note that gσ and gω

obtained with DD-ME2 are in parallel with each other, which
is typical in previous density-dependent RMF Lagrangians.
For DD-LZ1, on the contrary, the variation of gσ with re-
spect to density is smaller than that of gω. Such a peculiar
density-dependent behavior is attributed to the restoration of
PSS for high-l orbitals [56]. Due to the enhanced centrifugal
repulsion, the high-l orbitals are usually located in the surface
regions of finite nuclei, where the densities are much smaller
than the center region and thus require a different density-
dependent behavior for gσ and gω in order to reach PSS [56].
Meanwhile, as density increases, both gσ and gω of DD-LZ1
decrease slower than DD-ME2, while gρ decreases slightly
faster for DD-LZ1.

The differences in the density dependence of meson-
nucleon couplings lead to different predictions on the
properties of nuclear matter as well as finite nuclei. In Table I
the saturation properties of nuclear matter corresponding to

045803-3



XIA, SUN, MARUYAMA, LONG, AND LI PHYSICAL REVIEW C 105, 045803 (2022)

TABLE I. The saturation properties of nuclear matter obtained
with the covariant density functionals DD-LZ1 [56] and DD-ME2
[61]. The corresponding root-mean-square deviations � from the ex-
perimental binding energies of finite nuclei [106–108] are presented
as well, where the data are taken from Ref. [56].

n0 B K S L Ksym �

fm−3 MeV MeV MeV MeV MeV MeV

DD-LZ1 0.158 −16.06 230.7 32.0 42.5 −20 1.923
DD-ME2 0.152 −16.13 250.8 32.3 51.2 −87 2.400

the covariant density functionals DD-LZ1 [56] and DD-ME2
[61] are illustrated, while the root-mean-square deviations
from the experimental binding energies of finite nuclei are
presented as well [56]. It is evident that DD-LZ1 gives a better
description for the binding energies of finite nuclei in compar-
ison with DD-ME2. Meanwhile, the nuclear matter properties
around the saturation density obtained by both functionals are
consistent with the constraints B ≈ −16 MeV, K = 240 ± 20
MeV [21], S = 31.7 ± 3.2 MeV, and L = 58.7 ± 28.1 MeV
[22,23]. The binding energy per nucleon for both pure neu-
tron matter (PNM, Yp = 0) and symmetric nuclear matter
(SNM, Yp = 0.5) are presented in Fig. 2, while the corre-
sponding symmetry energy and its slope are indicated as
well. It is found that both functionals predict similar values
for B(nb) and S(nb). Nevertheless, DD-LZ1 gives a peculiar
density-dependent behavior for L(nb) with larger Ksym(n0) in
comparison with that of DD-ME2, which is mainly due to the
novel density-dependent meson-nucleon coupling strengths
adopted by DD-LZ1 [56]. Note that at non = 0.1 fm−3 a robust
constraint was found with BPNM(non) = 11.4 ± 1.0 MeV and
BSNM(non) = −14.1 ± 0.1 by reproducing finite nuclei prop-
erties [105], where non is approximately the average baryon
number density of finite nuclei, and the constraint is fulfilled
by the predictions of both functionals adopted here. More
detailed discussions can be found in Ref. [56].

B. Nonuniform nuclear matter

1. Nuclear pasta at nb � 10−4 fm−3

The microscopic structures of nuclear matter are obtained
by solving the Klein-Gordon equations (4)–(7) in a WS cell
with the density distributions of fermions fixed by Eq. (13).
To simplify our calculation, instead of solving Eqs. (4)–(7)
and (13) inside a large three-dimensional (3D) periodic cell
including exact WS cells [77,79,80], we have adopted the
spherical and cylindrical approximations [74]. The differen-
tial equations for the mean fields (φ = σ , ω, ρ, A) are then
reduced to one-dimensional (1D), i.e.,

1D : ∇2φ(�r) = d2φ(r)

dr2
, (16)

2D : ∇2φ(�r) = d2φ(r)

dr2
+ 1

r

dφ(r)

dr
, (17)

3D : ∇2φ(�r) = d2φ(r)

dr2
+ 2

r

dφ(r)

dr
. (18)
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FIG. 2. Binding energy per nucleon for symmetric nuclear
matter (SNM) and pure neutron matter (PNM), the correspond-
ing symmetry energy S(nb), and its slope L(nb) as functions of
baryon number density. The constrains BPNM(non ) = 11.4 ± 1.0
MeV, BSNM(non ) = −14.1 ± 0.1 MeV [105], BSNM(n0) = −16 MeV,
BPNM(n0) = BSNM(n0 ) + S(n0) = 15.7 ± 3.2 MeV, S(n0) = 31.7 ±
3.2 MeV, and L(n0) = 58.7 ± 28.1 MeV [22,23] are denoted by the
solid squares.

Those differential equations are solved with fast cosine trans-
formation as illustrated in Ref. [80], which satisfies the
boundary conditions dφ(r)

dr |r=0,RW = 0, with RW being the WS
cell radius. By fulfilling the constancy of chemical potentials
in Eq. (13), these conditions in fact correspond to the reflective
boundary conditions at r = 0 and r = RW. The optimum cell
size RW is then fixed by minimizing the energy per baryon
of nuclear matter at fixed average baryon number density nb

and proton fraction Yp, where the contributions of electrons
are included, fulfilling the global charge neutrality condition∫

[np(�r) − ne(�r)]d3r ≡ 0. (19)

By assuming various dimensions with geometrical symme-
tries, five types of pasta phases can be obtained based on TFA,
i.e., the slab phase in Eq. (16), the rod-tube phases in Eq. (17),
and the droplet-bubble phases in Eq. (18). The density profiles
are then fixed with the constancy of chemical potentials in
Eq. (13).
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FIG. 3. Density profiles of nucleons and electrons in WS cells for droplet, rod, slab, tube, and bubble phases at nb = 0.02, 0.04, 0.06, 0.08,
and 0.08 fm−3 (from top to bottom), respectively. Both asymmetric nuclear matter (Yp = 0.1, 0.3) and symmetric nuclear matter (Yp = 0.5) are
considered, where the covariant density functional DD-LZ1 [56] is adopted. The boundary of the WS cell is indicated by a vertical line in each
panel.

Adopting the two covariant density functionals DD-LZ1
[56] and DD-ME2 [61], the properties of typical pasta struc-
tures (droplet, rod, slab, tube, and bubble) are obtained. As an
example, in Fig. 3 we present the density profiles for typical
pasta phases at various densities and proton fractions adopting
the functional DD-LZ1. The droplet size Rd and WS cell size
RW can be obtained with

Rd =
⎧⎨
⎩

RW

( 〈np〉2

〈n2
p〉

)1/D
, dropletlike

RW

(
1 − 〈np〉2

〈n2
p〉

)1/D
, bubblelike

, (20)

where 〈n2
p〉 = ∫

n2
p(�r)d3r/V and 〈np〉 = ∫

np(�r)d3r/V with
the WS cell volume

V =
⎧⎨
⎩

4
3πR3

W, D = 3
πaR2

W, D = 2
a2RW, D = 1

. (21)

Here D represents the dimension with D = 3 for droplets-
bubbles, D = 2 for rods-tubes, and D = 1 for slabs. Since the
slab and rod-tube extend infinitely in space for D = 1 and
2, we have adopted a finite cell size a so that the volume is
finite. Note that the density profiles end at the cell boundary
r = RW, which is indicated by a vertical line in each panel. It
is evident that the density distributions of electrons are not
constant. This leads to charge screening effects and affects
the properties of nuclear pastas [74], which would become
significant at large proton fractions, e.g., Yp = 0.5. Neutrons
start to drip out and form neutron gas outside of the nucleus
as we decrease the proton fraction (e.g., Yp = 0.1), where the
neutron density never vanishes throughout the WS cell. For
protons, on the contrary, the density always drops to zero

outside of the nucleus. Meanwhile, comparing the density
profiles determined by the two functionals, we find both are
similar to each other, while those obtained with DD-LZ1 vary
more smoothly than those of DD-ME2.

2. Droplet phase at nb < 10−4 fm−3

For nuclear matter at nb < 10−4 fm−3, we consider only
the droplet phase since it is energetically more favorable. As
we decrease the density of nuclear matter, the optimum cell
size for the WS cell grows drastically, which quickly exceeds
the limit for any viable numerical simulations illustrated in
Sec. III B 1. In such cases, we divide a WS cell into two parts,
i.e., a core with radius Rin and a spherical shell (Rin < r �
RW) covering the core. Electrons and neutrons in the shell
region take constant densities. To retain the effects of charge
screening as much as possible, the electrons still move freely
within the core at r < Rin, while the electron and neutron
densities in the shell region are fixed by minimizing the energy
per baryon at given average baryon number density nb, core
radius Rin, and WS cell size RW. We note that the optimum
density distributions are still consistent with the constancy of
chemical potentials in Eq. (13), where the chemical potentials
for each type of particles in the shell region are in fact their
average values.

As an example, in Fig. 4 we present the density profiles
of electrons in WS cells for the droplet phase of nuclear
matter at an average baryon number density nb = 1.512 69 ×
10−5 fm−3 and proton fraction Yp = 0.5, where the covariant
density functional DD-LZ1 [56] is adopted. The reflective
boundary conditions at r = 0 and r = RW are fulfilled with
dne(r)

dr |r=0,RW = 0. A spherical nucleus is located in the center
at r = 0, which attracts electrons so that the densities decrease
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FIG. 4. Density profiles of electrons in WS cells for various core
radius Rin in comparison with that of the full calculation (RW =
98.63 fm) in Sec. III B 1.

with r. Note that neutrons are still confined within the nucleus
and thus vanish in the shell region. The WS cell size RW is
optimized for each core radius Rin, which is slightly smaller
comparing with that of the full calculation with Rin = RW. It
is evident that the density profiles obtained in each scenario
coincide with each other in the core region, while the density
in the shell region takes constant values and is sensitive to the
choice of the core radius Rin. The corresponding thermody-
namic quantities such as the energy density and pressure vary
little with respect to Rin, suggesting that the EOSs obtained by
dividing the WS cell into two parts are consistent with that of
the full calculation.

In contrast to the EOSs, the proton (Z) and neutron (N)
numbers of the nucleus are altered if Rin < RW, which is due
to the slight variations in the optimum WS cell radius RW. To
show this explicitly, in Fig. 5 we present the charge number
Z , volume fraction of the core to WS cell R3

in/R3
W, and relative

deviation of the WS cell size �RW/RW (�RW = RW|Rin=RW −
RW|Rin<RW ) for the droplet phase of symmetric nuclear matter
(Yp = 0.5) as functions of baryon number density nb. Three
different core radii Rin are adopted, where the corresponding
results are compared with those of the full calculation at Rin =
RW. It is found that dividing the WS cell into two parts leads
to an underestimation of the proton-neutron numbers, where
the reduction increases if a smaller core radius Rin is adopted.
Note that the corresponding optimum WS cell sizes are al-
tered slightly, suggesting that the proton-neutron numbers of
the nucleus are sensitive to the microscopic structures of the
WS cell. Nevertheless, it is worth mentioning that instead of
solving the Dirac equations, we have adopted TFA for nuclear
pastas, which introduces uncertainty for the proton-neutron
numbers, as the shell effects are not accounted for in our
calculation. At smaller densities, the volume fraction of the
core decreases quickly, while the deviation of proton-neutron
numbers from full calculation decreases. In such cases, to
obtained the EOSs of nuclear matter at densities nb � 10−4

fm−3, we take a moderate value with Rin = 35.84 fm.
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FIG. 5. Proton number, volume fraction of the core, relative de-
viation of the WS cell size for the droplet phase of symmetric nuclear
matter (Yp = 0.5) as functions of baryon number density nb.

IV. RESULTS AND DISCUSSION

To give a rough estimation on the uncertainties of our
calculation, in Fig. 6 we first present the energy per baryon
of finite nuclei obtained within the framework of TFA. Note
that the spikes in Fig. 6 emerge due to the variations in the
energy per baryon along the isotopic chain. The results are
then compared with the experimental value from the 2016
Atomic Mass Evaluation (AME2016) [106–108]. Since the
shell effects and nucleon pairing [109] are neglected in our
current study, the obtained results deviate from the experi-
mental value, which is particularly the case for nuclei with
proton-neutron numbers close to the magic numbers. In the
framework of TFA, it is found that DD-LZ1 gives a better
description for heavy nuclei, while the energy per baryon of
light nuclei obtained with DD-ME2 are close to the experi-
mental value. In such cases, we expect that the energy density
of nuclear pasta obtained by DD-LZ1 is more accurate as
the nuclei are heavier. Nevertheless, it is worth mentioning
that there is a systematic underestimation for DD-ME2 on the
energy per baryon, which is mainly due to the smaller nucleon
mass adopted in the calculation with M = 938.5 MeV and
938.9 MeV for DD-ME2 and DD-LZ1, respectively. If we
compare the binding energies of nuclei, the results predicted
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FIG. 6. Energy per baryon of finite nuclei obtained with the two
covariant density functionals DD-LZ1 [56] and DD-ME2 [61] in the
framework of TFA. The results are compared with the experimental
data from AME2016 [106–108].

by the two functionals coincide with each other and converge
for heavy nuclei at large mass numbers.

A. Nuclear matter EOSs at fixed proton fractions

We first investigate the properties of nuclear matter at fixed
proton fractions, i.e., symmetric nuclear matter with Yp = 0.5,
and asymmetric nuclear matter with Yp = 0.3 and 0.1. The
baryon number density nb ranges from ∼10−9 to ∼0.11 fm−3,
where both the uniform and nonuniform phases illustrated in
Sec. III are examined. For nonuniform nuclear matter, the
global charge neutrality condition is fulfilled by including the
contributions of electrons, which are distributed nonuniformly
inside WS cells. The optimum structures of nuclear matter
are then fixed by searching for the energy minimum among
various shapes and WS cell sizes at fixed baryon number
density nb and proton fraction Yp.

The energy per baryon (E/A), pressure P, proton number
of nucleus Z , droplet size Rd, and WS cell size RW for asym-
metric nuclear matter (Yp = 0.1, 0.3) and symmetric nuclear
matter (Yp = 0.5) are presented in Fig. 7, where the covariant
density functional DD-LZ1 [56] is adopted. The thin solid
curves indicate the results for uniform nuclear matter, where
the energy per baryon is effectively reduced by up to 10 MeV
as nonuniform structures take place. At nb � 0.01 fm−3, the
obtained pressure becomes larger for nuclear pastas, while
at lower densities the pressure becomes indistinguishable be-
tween the uniform and nonuniform phases. In general, the
obtained results of DD-LZ1 [56] coincide with those of DD-
ME2 [61] due to the similar behavior of the binding energy
in Fig. 2. Meanwhile, the energy per baryon for DD-ME2 is
slightly smaller than that of DD-LZ1, which is attributed to the
smaller nucleon mass adopted in the calculation as in Fig. 6.

For the microscopic structures of nuclear matter, a few
examples concerning the detailed density distributions of var-
ious nuclear pasta structures are illustrated in Figs. 3 and 4.
The evolution of the shapes and sizes of nuclear pastas with

respect to density can be found in Fig. 7. It is found that the
droplet, rod, slab, tube, and bubble phases appear sequentially
as density increases, which are marked in various colors with
different values of Z , Rd, and RW. The corresponding transi-
tion densities among various nonuniform phases are indicated
in Table II. We note that the core-crust transition density
generally increases with proton fraction Yp. Meanwhile, the
phase diagrams as well as the transition densities obtained
with the two functionals are close to each other, while the
density regions for nonuniform structures are slightly larger
for DD-ME2 than those of DD-LZ1.

The droplet size Rd and WS cell size RW are obtained with
Eqs. (20) and (21). According to Fig. 7, it is found that both
Rd and RW increase with D, which coincide with previous
studies [74]. For each configuration, the optimum sizes for
Rd and RW increase if we adopt a smaller proton fraction
Yp. Meanwhile, as we decrease the density, the droplet size
remains almost constant with Rd ≈ 6 fm, while the WS cell
size RW grows drastically. We thus divide the WS cell into
a core with radius Rin = 35.84 fm and a spherical shell as
illustrated in Sec. III B 2. Comparing the results predicted by
the two functionals, aside from the differences in the phase
diagrams, we find the obtained droplet sizes Rd are similar.
Nevertheless, the WS cell size RW become slightly larger if
DD-ME2 is adopted. This leads to slightly larger values in the
proton (Z) and neutron (N) numbers for each WS cell, which
are determined by Z = YpnbV and N = (1 − Yp)nbV , with the
volume V fixed by Eq. (21) with a = 30 fm.

B. Neutron star EOSs in β equilibrium

Now we consider the EOSs of neutron star matter fulfilling
the β stability condition μn = μp + μe = μp + μμ, where
the energy per baryon, pressure, and proton fraction for the
most favorable configurations are presented in Fig. 8. The
obtained results are then compared with those of the uniform
matter. With the emergence of nonuniform structures, the
proton fractions are increased significantly, which effectively
reduces the energy per baryon by up to 8 MeV. The pressure
of nonuniform matter becomes larger than that of the uniform
one. Comparing the results obtained with the two functionals,
we note that the EOSs at densities nb � 0.01 fm−3 coincide
with each other, while the energy per baryon and consequently
the energy density obtained with DD-ME2 is slightly smaller
than that of DD-LZ1 (within 0.1%) due to the smaller nucleon
mass adopted in the calculation. By decreasing the density,
the energy per baryon decreases and approaches ∼930 MeV,
which coincides with the energy per baryon of the most stable
nucleus 56Fe. Compared with previous studies on the EOSs
of outer crusts [84,110,111], it is found that the differences
are insignificant as long as neutrons do not drip out of nuclei,
which would effectively soften the EOSs. We note that the
slope of the energy per baryon, pressure, and proton frac-
tion change suddenly at nb � 2 × 10−4 fm−3 with μn > M,
corresponding to the neutron drip density with neutron gas
coexisting with the liquid phase of nuclear matter.

At vanishing densities, it is found that the proton fraction
Yp approaches a value slightly smaller than 0.5, in contrast to
the cases neglecting Coulomb interaction, where symmetric
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FIG. 7. Energy per baryon (E/A), pressure P, proton number Z . and size Rd of the droplet, and WS cell size RW for asymmetric nuclear
matter (Yp = 0.1, 0.3) and symmetric nuclear matter (Yp = 0.5), which are obtained adopting the covariant density functional DD-LZ1 [56]
in the framework of TFA. The solid curves indicate the results for uniform matter. The upper panels show the results for the droplet phase at
nb < 0.01 fm−3, where the black dots are obtained by dividing a WS cell into two parts as indicated in Sec. III B 2. In the lower panels, the
droplet (red), rod (dark red), slab (yellow), tube (lavender), and bubble (purple) phases appear sequentially as the density increases.

TABLE II. Densities (in fm−3) for shape transitions, which are obtained by varying the density in a step of 0.002 fm−3.

DD-LZ1 DD-ME2

Transition Yp = 0.1 Yp = 0.3 Yp = 0.5 β-stable Yp = 0.1 Yp = 0.3 Yp = 0.5 β-stable

Droplet-rod 0.039 0.021 0.025 0.059 0.039 0.021 0.025 0.063
Rod-slab 0.057 0.039 0.043 0.065 0.059 0.039 0.043 0.071
Slab-tube 0.073 0.069 0.073 0.069 0.077 0.071 0.075 0.073
Tube-bubble 0.077 0.083 0.085 – 0.081 0.085 0.091 –
Tube/bubble-uniform 0.081 0.101 0.099 0.071 0.085 0.107 0.109 0.075
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FIG. 8. The EOSs of cold neutron star matter fulfilling the β-
stability condition, which are obtained with the two covariant density
functionals DD-LZ1 [56] and DD-ME2 [61]. In the left panels,
both the uniform and nonuniform phases are presented, while only
uniform phases emerge in the density range of the right panels. The
corresponding proton factions Yp are indicated in the bottom panels
as well.

nuclear matter with Yp = 0.5 is more stable. The EOS pre-
dicted by DD-LZ1 is softer than that of DD-ME2 at nb � 0.3
fm−3, which becomes stiffer at larger densities. Aside from
the incompressibility of symmetric nuclear matter, we note
that the stiffness of the EOSs is also closely related to the
evolution of proton fractions, where the density dependence
of symmetry energy plays an important role, i.e., Yp increases
with symmetry energy S and approaches 0.5. According to
Fig. 2, the symmetry energy predicted by the functional DD-
ME2 is greater than that of DD-LZ1 at nb � 0.6 fm−3 but
becomes smaller at larger densities. This indicates a smaller
curvature parameter Ksym of symmetric energy for DD-ME2,
despite the larger slope L, which is attributed to peculiar
density-dependent behavior of the coupling strengths adopted
by DD-LZ1, as indicated in Fig. 1. Note that the stiffness of
neutron star matter presented in Fig. 8 has direct consequences
on the mass-radius relations of neutron stars [3], which will be
illustrated in Sec. IV C.

The microscopic structures of nuclear pasta corresponding
to the EOSs in Fig. 8 are indicated in Fig. 9, where the
proton number Z , WS cell radius RW, and droplet size Rd

as functions of baryon number density are presented. For the
phase diagrams of nuclear pasta in β equilibrium, the droplet,
rod, slab, tube, and uniform phases appear sequentially as
density increases, while the bubble phase does not appear
with the energy per baryon being slightly larger (∼0.1 keV).
The obtained results with the functional DD-ME2 coincide
with those in Ref. [64]. Nevertheless, as indicated in Table II,
there are slight differences in the shape transition densities and
the emergence of the tube phase, which slightly increases the
core-crust transition density in our current study.
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FIG. 9. Proton number Z , WS cell radius RW, and droplet size Rd

of nuclear pastas corresponding to Fig. 8.

At nb � 0.01 fm−3, the nuclear interaction has little impact
on the microscopic structures of neutron star matter, where the
proton number Z , WS cell radius RW, and droplet size Rd ob-
tained with the two functionals generally coincide with each
other. As we decrease the density to infinitesimal, we have
Z →∼31, Rd →∼5.4 fm, and RW → ∞ for both functionals,
which can be attributed to the similar proton fractions in Fig. 8
and WS cell radii in Fig. 9. To show this explicitly, in Fig. 10
we present the nucleon numbers for nuclei in the outer crusts
of neutron stars as functions of energy density E/V , where
both functionals predict similar numbers that increase with
density. The consequence of dividing a WS cell into two parts
(Rin = 35.84 fm) for β-equilibrium matter in the outer crusts
can be identified in the overlapped region at E/V ≈ 0.01–0.1
MeV/fm3, where the full calculation predicts slightly larger
nucleon numbers. At smaller densities, it is found that the
deviations in nucleon numbers caused by dividing a WS cell
into two are reduced slightly, where the electron density be-
comes too small to have any sizable impact on the properties
of nuclei. A similar trend is observed for symmetric nuclear
matter as well, according to Fig. 5. We further compare the
sequences of nuclei with those predicted by the BPS model,
where the binding energies of nuclei obtained with various
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FIG. 10. Neutron (N) and proton (Z) numbers of nuclei in the
outer crusts of neutron stars, where the results obtained in this work
are compared with those of BPS models adopting slightly different
binding energies of nuclei predicted by various nuclear models [111].

nuclear models were adopted, i.e., those calculated by the
following researchers:

(1) Baym, Pethick, and Sutherland (BPS) [84] using the
nuclear data of Myers and Swiatecki [112];

(2) Haensel, Zdunik, and Dobaczewski [113] using the
nuclear data of Dobaczewski, Flocard, and Treiner
(HZD-SkP) [114] and Myers (HZD-M) [115];

(3) Haensel and Pichon [110] using the nuclear data of
Möller and Nix (HP-MN) [116] and Aboussir et al.
(HP-APDT) [117];

(4) Rüster, Hempel, and Schaffner-Bielich [111] using the
nuclear data of Skyrme (RHS-BSk8) [118] and RMF
models (RHS-TMA) [119].

Due to the lack of experimental data, there are discrepancies
on the binding energies for nuclei in outer crusts at E/V �
0.001 MeV/fm3, which lead to different sequences of nuclei.
Since TFA is adopted in our calculation, in contrast to the BPS
model with discrete nucleon numbers, the nucleon numbers
vary smoothly. In general, the values of Z and N obtained here
are larger than those of the BPS model, while all of them are
increasing with density.

In contrast to the cases at small densities, different re-
sults are obtained with the two functionals if we examine the
density regions at nb � 0.01 fm−3, where DD-LZ1 predicts
smaller RW, and larger Z and Rd as the proton fraction is larger
than that of DD-ME2. This is attributed to the differences in
the symmetry energy at subsaturation densities as indicated
in Fig. 2, where the functional DD-LZ1 predicts larger values
than that of DD-ME2. The variation in the proton number Z
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FIG. 11. Mass-radius relations of neutron stars obtained with
the two covariant density functionals DD-LZ1 [56] and DD-ME2
[61]. The contours indicate the constraints from the binary neutron
star merger event GRB 170817A-GW170817-AT 2017gfo within
90% credible region [34], as well as PSR J0030+0451 and PSR
J0740+6620 from NICER and XMM-Newton Data within the 68%
credible region [30–33].

as well as other microscopic structures will affect the trans-
port and elastic properties of neutron star matter, which are
essential for interpreting various neutron star observations
[120,121]. For example, assuming a point nucleus embedded
in a uniform electron background, the effective shear modulus
of a bcc crystal can be estimated with [122]

μeff = 0.1194
e2Z2

RWV
. (22)

The spectrums of the quasiperiodic oscillations (QPOs) ob-
served after giant flares of soft gamma repeaters are thus
expected to be affected by the variation in Z and RW

[123–131].

C. Neutron stars

Based on the unified EOSs of neutron star matter presented
in Fig. 8, we investigate the structures of neutron stars by
solving the TOV equation

dP

dr
= −GME

r2

(1 + P/E )(1 + 4πr3P/M )

1 − 2GM/r
, (23)

dM

dr
= 4πEr2, (24)

where the gravity constant G = 6.707 × 10−45 MeV−2. The
mass-radius relations of neutron stars predicted by the two
functionals are then presented in Fig. 11. The corresponding
constraints from pulsar observations are indicated as well,
i.e., the constraints from the binary neutron star merger event
GRB 170817A-GW170817-AT 2017gfo within a 90% credi-
ble region [34], the constraints of PSR J0030+0451 and PSR
J0740+6620 from NICER and XMM-Newton Data plotted in
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solid [30,31] and dashed [32,33] contours covering the 68%
credible region.

It is evident that both the maximum masses obtained with
the two functionals easily surpass the two-solar-mass limit of
PSR J0740+6620 [29], where Mmax = 2.56 and 2.48 M� for
DD-LZ1 and DD-ME2, respectively. The radii obtained with
the two functionals are slightly different, which is attributed
the variations in the stiffness of the EOSs in Fig. 8. For
a fixed neutron star mass with the center density nb � 0.3
fm−3, the radius predicted by DD-LZ1 is smaller than that
of DD-ME2 due to the softer EOS in Fig. 8. For neutron
stars with larger masses, the situation reverses since DD-LZ1
predicts stiffer EOS. In such cases, the combination of small
radii-masses and large radii-masses for DD-LZ1 suggests that
the neutron star EOS is soft at small densities and stiff at
larger densities, which is partly due to the larger curvature
parameter Ksym of symmetric energy and is attributed to the
peculiar density-dependent behavior of the coupling strengths
as discussed in Sec. IV B. More accurate measurements on the
radii are necessary in order to tell the difference between the
predictions of the two functionals, which could, in principle,
measure Ksym as well [132,133].

Finally, it is worth mentioning that the densities at the
center of the most massive neutron stars reach ∼0.8 fm−3.
At such large densities, new degrees of freedom such as
mesons (π , K , etc.), heavy baryons (�, �, �, �, �, etc.),
and deconfinement phase transition into quarks (u, d , s) may
take place, which would effectively reduce the energy density
of stellar matter. Consequently, the EOSs of stellar matter
becomes softer, and the corresponding radii of compact stars
become smaller [16,134–137]. The possible existence of hy-
perons adopting the covariant density functionals DD-LZ1
and DD-ME2 is investigated in Refs. [138,139], while other
possible scenarios will be examined in our future studies.

V. CONCLUSION

In this work we have developed a new numerical recipe
to investigate the properties of nuclear matter in a unified
manner, which covers a wide range of densities with 10−10

fm−3 � nb � 2 fm−3. The Thomas-Fermi approximation was
adopted, where spherical and cylindrical symmetries were as-
sumed for the WS cells. The effects of charge screening were
shown to affect the microscopic structures (shape, nuclear
radius Rd , cell size RW, etc.) of nuclear pasta [74]. In such
cases we have included the effects of charge screening around
the nucleus, where electrons move freely with the density pro-
files dominated by the Coulomb potential. For fixed nuclear
shape, baryon number density nb, and proton fraction Yp, the
optimum WS cell size RW was obtained by minimizing the
energy of the system, while the ground state was fixed by
searching for the minimum energy per baryon among various
nuclear shapes.

We then investigate the EOSs of nuclear matter as well
as the corresponding microscopic structures adopting a novel
relativistic-mean-field Lagrangian (DD-LZ1) with peculiar

density-dependent meson-nucleon couplings, which were
compared with those of DD-ME2. The couplings gσ and gω as
functions of density are in parallel to each other for DD-ME2,
while this is not the case for DD-LZ1 in order to restore the
pseudospin symmetry of the high-l orbitals in finite nuclei.
Both functionals predict similar saturation properties for nu-
clear matter, so that the differences at densities and isospin
asymmetries away from nb = n0 and Yp = 0.5 are mainly due
to the different density-dependent behavior of meson-nucleon
couplings, which were investigated for the properties of nu-
clear matter and neutron stars. Various scenarios with both
fixed proton fractions and β equilibration were examined.
It was found that typical nuclear matter structures (droplet,
rod, slab, tube, bubble, and uniform) emerge sequentially as
density increases. The results obtained with the two covariant
density functionals generally coincide with each other, while
the density range for nonuniform nuclear matter obtained with
DD-ME2 is slightly larger than that of DD-LZ1. For neutron
star matter in β equilibrium, the two functionals also predict
similar results throughout the density range. Nevertheless,
the differences on the microscopic structures of neutron star
matter are evident at nb � 0.01 fm−3, where DD-LZ1 pre-
dicts smaller RW, larger Z , and Rd as the proton fraction is
larger than that of DD-ME2. The variation in Z , Rd, and RW

would affect the transport and elastic properties of neutron star
matter, which are expected to alter various physical processes
in neutron star properties and evolutions [120,121], e.g., the
spectrums of the QPOs [123–131], the release of magnetic
and elastic energy observed in magnetar bursts [140–142],
the short gamma-ray burst precursors of neutron star mergers
[143], pulsar glitches [144–150], and the gravitational waves
emitted by fast rotating neutron stars [151]. Meanwhile, the
EOS obtained with DD-LZ1 is softer than that of DD-ME2
at nb � 0.3 fm−3, which becomes stiffer at larger densities.
This is due to the larger curvature parameter Ksym of sym-
metry energy for DD-LZ1, which is attributed to the peculiar
density-dependent behavior of the coupling strengths. The
variations of the EOSs have a direct consequence on the mass-
radius relations of neutron stars, where the radii of neutron
stars predicted by DD-LZ1 are smaller than those of DD-ME2
at masses lower than 1.6M� but larger for more massive
neutron stars.
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