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Quenched � spin-orbit splitting by a relativistic Fock diagram in single-� hypernuclei
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We extend the relativistic Hartree-Fock (RHF) theory to study the structure of single-� hypernuclei. The
density dependence is taken in both meson-nucleon and meson-hyperon coupling strengths, and the induced
�-nucleon (�N) effective interactions are determined by fitting � separation energies to the experimental data
for several single-� hypernuclei. The equilibrium of nuclear dynamics described by the RHF model in normal
atomic nuclei, namely, the balance between nuclear attractive and repulsive interactions, is then found to be
drastically changed in single-� hypernuclei, revealing a different role of Fock terms via � hyperon from the
nucleon exchange. Since only one hyperon exists in a single-� hypernucleus, the overwhelmed �N and ��

attractions via the Hartree than the �� repulsion from the Fock terms require an alternation of meson-hyperon
coupling strengths in RHF to rebalance the effective nuclear force with the strangeness degree of freedom,
leading to an improved description of � Dirac mass and correspondingly a systematically reduced σ -� coupling
strength gσ� in current models as compared to those relativistic mean-field (RMF) approaches without Fock
terms. As a result, the effective � spin-orbit coupling potential in the ground state of hypernuclei is suppressed,
and these RHF models predict correspondingly a quenching effect in � spin-orbit splitting in comparison with
the RMF cases. Furthermore, the � spin-orbit splitting could decrease efficiently by evolving the hyperon-
relevant couplings gσ� and gω� simultaneously, where to reconcile with the empirical value the RHF models
address a larger parameter space of meson-hyperon couplings.
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I. INTRODUCTION

Hypernuclei are of special interest in finite nuclear systems
since they allow one to unveil the feature of baryon-baryon in-
teraction with the degrees of freedom beyond nucleons [1–4].
The wealth of information of in-medium baryon-baryon inter-
action then impact theoretical predictions and comprehension
of the deep interior of neutron stars [5–8]. In recent years,
new opportunities arise for hypernuclear physics with the
progress of facilities for radioactive ion beams, such as the
Japan Proton Accelerator Research Complex (J-PARC) [9],
the Thomas Jefferson National Accelerator Facility (JLab)
[10], the Facility for Antiproton and Ion Research (FAIR)
[11], and the High-Intensity Heavy-ion Accelerator Facil-
ity (HIAF) [12,13]. As the least strangeness number S =
−1, relatively more abundant experimental data have been
achieved for the single-� hypernuclei, including � separation
energy and its spin-orbit splitting, in different mass regions
[14–16]. Via the proposed novel method such as charge-
exchange reactions with heavy ion projectiles, it is expected
to produce very neutron-rich hypernuclei and corresponding
resonance states with enhanced production rates in the fu-
ture [17–19], which makes it possible to further understand
strangeness-bearing baryon-baryon interactions, namely the
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hyperon-nucleon (Y N) and the hyperon-hyperon (YY ), at the
various circumstance of nuclear medium.

To study hypernuclei properties on the theoretical side,
feasible and reliable Y N and YY interactions need to be
introduced. Within the SU(3) or SU(6) framework and the
boson-exchange picture, Nijmengen [4,20–27] and Juelich
potentials [28–31] were proposed to produce the realistic
two-body Y N and YY interactions. Nowadays, the chiral
effective field theory in either nonrelativistic or covariant
framework also made great progress and has been extended to
describe the hyperon-nucleon scattering and hyperon masses
in the nuclear medium [32–44]. In addition, the lattice QCD
simulations become possible to establish the baryon-baryon
interactions as well [45–48]. Consequently, there are ab initio
methods or few-body models performed to study hypernuclei
structure with the obtained realistic (chiral) interactions, al-
though mainly in light-mass region, such as the (no-core) shell
model [49–61] and the cluster model [62–66].

The density functional theory has been well developed
and has been vindicated successfully in describing not only
infinite nuclear matter but the single-particle and collective
properties of finite nuclei in the almost entire nuclear chart,
e.g., see Refs. [67–77] and therein. Thus, it is naturally
extended to include the strangeness degree of freedom, trig-
gered by the necessity to investigate the hyperon-involved
nuclear force in different mediums and indicate its depen-
dence on several quantities such as baryon density and
isospin. Various models of the density functional theory,

2469-9985/2022/106(5)/054311(16) 054311-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8958-9787
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.054311&domain=pdf&date_stamp=2022-11-10
https://doi.org/10.1103/PhysRevC.106.054311


DING, QIAN, SUN, AND LONG PHYSICAL REVIEW C 106, 054311 (2022)

including the Skyrme-Hartree-Fock [78–86], the relativis-
tic mean-field (RMF) [87–104], the relativistic Hartree-Fock
(RHF) [105–107]. and the quark mean-field model [108–112],
were carried out to study properties of hypernuclei and hyper-
onic dense matter, where in general their effective Y N and YY
interactions were adopted by reproducing hyperon separation
energies or scattering data, then as an application were used
to explore nature of hypernuclear compact stars [113–118].

The relativistic version of density functional theory,
namely the covariant density functional (CDF), takes the
spin-orbit interaction into account self-consistently via Dirac
spinor, which is crucial for the interpretation of the shell struc-
ture and to reveal the origins of hidden pseudospin and spin
symmetries in atomic nuclei [74,75]. However, when applying
the CDF approach to hypernuclear systems, further efforts still
need to get a rational description of several quantities. It has
been revealed that the spin-orbit splitting of � hyperons is
systematically much smaller than that of nucleons [119–125].
In order to reproduce these experimental and empirical data,
a strong ω-tensor coupling could be introduced in �-relevant
effective interactions [126–128]. Whereas such a tensor cou-
pling is usually missed in nucleon channels when adopting
only the Hartree approximation in CDF models, leading to
an inconsistent treatment between hyperons and nucleons.
Another problem takes place when one predicts the maximum
mass of a neutron star by utilizing the obtained equations of
state (EoS) for hyperonic dense matter with CDF calculations
[105,116,117]. The appearance of hyperons in the core of stars
softens explicitly the EoS at high densities, correspondingly,
resulting in the difficulty of the theoretical predictions in
complying with the astronomical observations, referred to the
hyperon puzzle [16,129,130]. Thus, the detailed information
on hyperon-involved interaction, especially its in-medium fea-
ture with the density and isospin dependence, is essential to
clarify these issues.

In recent decades, the CDF approach has been success-
fully extended by taking into account the exchange diagram
of effective two-body interactions. The meson-nucleon cou-
pling strength is performed with a tuned density dependence,
which introduces the in-medium effects of nuclear force
phenomenologically from the idea of the Dirac Brueckner-
Hartree-Fock calculation [131]. With the inclusion of the
Fock terms, the contribution from π meson exchange and
the nonlocal self-energies [132–134] as well as the tensor
part of nuclear force [135–139] are involved naturally in
these well-developed RHF models. Consequently, essential
improvements were achieved in characterizing the nuclear
structure and nuclear matter properties, such as shell evolu-
tions [132,140,141], excitation and decay modes [142–147],
novel feature in exotic and superheavy nuclei [148–151], the
nuclear symmetry energy [105,152–154], and the nucleon
effective mass [155,156]. The progress in the nuclear many-
body problem, with either effective or ab initio method, then
provides solid pillars to illustrate the nature of nuclear struc-
ture [157], a matter of course to the hypernuclei.

The updated experimental data of nuclear single-particle
properties now help us to further refine nuclear structure
models, but the faults in reproducing the single-particle en-
ergies could lead to incorrect magic numbers and generate

the spurious shell closures [158]. Recently, the delicate bal-
ance between nuclear attractive and repulsive interactions
in the dynamic nuclear medium is realized vital to correct
such a problem, demonstrated by the calculations with al-
ternated density dependence of coupling strengths between
RMF and RHF Lagrangians [159]. As a result, the nucleon
spin-orbit splitting and the pseudospin symmetry restoration
are drastically influenced by the Fock terms and the ρ-tensor
coupling [132,133,160]. In addition, it is also found that
the nuclear thermodynamical properties could be correlated
with the in-medium balance of the effective nuclear force,
impacting the phase diagram structure of liquid-gas phase
transition [161,162]. Therefore, it is expected that the nuclear
dynamical equilibrium varies as well in hypernuclear systems
due to the involvement of the exchange diagram, which then
could play a role in predicting hyperon’s separation energies
and its spin-particle properties, consequently determining the
hyperon-relevant coupling strengths of the RHF models from
the experimental data. In fact, the influence of the hyperon-
involved physics via the Fock diagram has been unveiled by
previous studies on the symmetry energies and the neutron
star properties [105,107,163]. It was found that the nuclear
symmetry energy at high densities is suppressed enormously
due to the extra hyperon-induced suppression effect origi-
nating from the Fock channel, leading to a relatively small
predicted value of the neutron star radius [105]. While taking
further the contribution from � isobars into account, the pre-
dicted maximum mass and tidal deformability are compatible
with the data extracted from the GW170817 event [164].

In view of the capability of the RHF approach in describing
the properties of finite nuclei and nuclear matter, therefore, we
naturally perform a theoretical extension to study the structure
of hypernuclei in this work. As a first step, we now only focus
on the case of � hypernuclei, while their strangeness-bearing
effective interactions will be determined by reproducing the
experimental data of � separation energies for several single-
� hypernuclei. Then it is interesting to further investigate
the effect of the Fock diagram on the equilibrium of nuclear
dynamics and the spin-orbit splitting of hyperons, which is
the motivation of this work. In the following, we will intro-
duce the theoretical framework of the RHF approach for �

hypernuclei in Sec. II. In Sec. III the results of single-� hy-
pernuclei within RHF and RMF calculations will be presented
and discussed. Finally, a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. RHF Lagrangian and Hamiltonian with
inclusion of � hyperon

In this section, the general formalism of the RHF theory
will be briefly introduced, and an extension of the energy
functional will be performed to include extra the �-hyperon
degree of freedom. From the meson-exchange diagram of
nuclear force, the bricks of the Lagrangian density for � hy-
pernuclei consist of the baryon fields (ψB), nucleon (ψN ) and
hyperon (ψ�); the isoscalar meson fields, σ meson (σ ) and ω

meson (ωμ); the isovector meson fields, ρ meson (�ρμ) and π

meson (�π ); and the photon field (Aμ). Thus, the Lagrangian
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density for a � hypernucleus can be expressed as

L = LB + LIS + LIV + LA + LI , (1)

where the terms of free fields read as

LB =
∑

B

ψ̄B(iγ μ∂μ − MB)ψB, (2)

LIS = + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

4
�μν�μν + 1

2
m2

ωωμωμ, (3)

LIV = − 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ

+ 1

2
∂μ �π · ∂μ �π − 1

2
m2

π �π · �π, (4)

LA = − 1

4
FμνFμν, (5)

where the index B (B′ later on) represents different baryons
(either nucleon N or hyperon �), with its sum

∑
B over

neutron n, proton p, and hyperon �. MB and mφ give the
masses of the baryon and mesons (φ = σ, ωμ, �ρμ, �π ), while
�μν , �Rμν , and Fμν are the field strength tensors of vector
mesons ωμ, �ρμ, and photon Aμ, respectively. The interaction
between nucleon (hyperon) and mesons (photon) is involved
by the Lagrangian LI ,

LI =
∑

B

ψ̄B(−gσBσ − gωBγ μωμ)ψB

+ ψ̄N

(
−gρNγ μ�τ · �ρμ − fπN

mπ

γ5γ
μ∂μ �π · �τ

+ fρN

2MN
σμν∂ν �ρμ · �τ − eγ μ 1 − τ3

2
Aμ

)
ψN . (6)

Here the � hyperon (namely ψB taken as ψ�), which is charge
neutral with isospin zero, participates only in the interactions
propagated by the isoscalar mesons. While for the nucleon
(here ψB taken as ψN ), namely the neutron or proton dis-
tinguished by their opposite projection value τ3 = 1 or −1
of the isospin operator �τ , the isovector mesons are also in
charge. The coupling constants gφB (gφN ) and fφN determine
the strengths of various meson-baryon (meson-nucleon) cou-
plings by means of baryon-density-dependent functions to
introduce the nuclear in-medium effects phenomenologically
[155].

With the inclusion of Fock diagrams, several strangeness-
bearing mesons, such as K , K∗, and κ , could participate in
the �N interactions [27,28]. As in this work we focus on the
ground-state properties of single-� hypernuclei, their contri-
bution could be suppressed by the Fock diagram itself. For
instance, it is shown that the effects of K and K∗ mesons could
be relatively small in single-� hypernuclei due to their largely
canceled contribution [165,166]. Therefore, the relevant effect
of strangeness degree of freedom is ignored in our current
theoretical calculation.

Based on the standard variational principle, one can deduce
the corresponding nucleon (hyperon) Dirac equation, meson
Klein-Gordon equations, and photon Proca equation from the

Lagrangian density L ,

(iγ μ∂μ + MB + �B)ψB = 0, (7)(
� + m2

σ

)
σ = −gσN ψ̄NψN − gσ�ψ̄�ψ�, (8)(

� + m2
ω

)
ωμ = +gωN ψ̄Nγ μψN + gω�ψ̄�γ μψ�,

(9)(
� + m2

ρ

)
�ρμ = +gρN ψ̄Nγ μ�τψN

+ ∂ν

fρN

2MN
ψ̄Nσμν �τψN , (10)

(
� + m2

π

)
�π = +∂ν

fπN

mπ

ψ̄Nγ 5γ ν �τψN , (11)

∂νF νμ = +eψ̄N
1 − τ3

2
γ μψN , (12)

where the square box � ≡ ∂μ∂μ. The baryon self-energy is
denoted by �B in the Dirac equation (7), which takes into
account the hypernuclear in-medium effects in describing
single-particle properties of nucleon or hyperon. With the help
of the propagators Dφ and DA, the meson- and photon-field
operators ϕ(x) (ϕ = σ, ωμ, �ρμ, �π, Aμ) in Eqs. (8)–(12) can be
expressed formally as

σ (x) = −
∑

B′

∫
dx′ψ̄B′ (x′)ψB′ (x′)GσB′ (x′)Dσ (x, x′),

(13a)

ωμ(x) = +
∑

B′

∫
dx′ψ̄B′ (x′)ψB′ (x′)G μ

ωB′ (x′)Dω(x, x′),

(13b)

�ρμ(x) = +
∫

dx′ψ̄N (x′)ψN (x′)G μ
ρN (x′)Dρ (x, x′), (13c)

�π (x) = −
∫

dx′ψ̄N (x′)ψN (x′)GπN (x′)Dπ (x, x′), (13d)

Aμ(x) = +
∫

dx′ψ̄N (x′)ψN (x′)G μ
AN (x′)DA(x, x′). (13e)

Here x is four-vector (t, x). Correspondingly, we define in-
teraction vertices GϕB(x) for various meson (photon)-nucleon
(hyperon) coupling channels, which for isoscalar σ and ω

mesons are represented as

GσB(x) = +gσB(x), (14a)

G μ
ωB(x) = +gωB(x)γ μ. (14b)

Apparently, not only nucleons but the � hyperon can con-
tribute to the isoscalar meson fields. For the rest, namely the
isovector mesons and photon fields, it is natural that their in-
teraction vertices connect only to nucleons since the isoscalar
and charge-zero nature of � hyperon,

G μ
ρN (x) = +gρN (x)γ μ�τ + fρN (x)

2MN
σ νμ�τ∂ν (x), (15a)

GπN (x) = + fπN (x)

mπ

γ5γ
ν �τ∂ν (x), (15b)

G μ
AN (x) = +eγ μ 1 − τ3

2
. (15c)
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Starting from the Lagrangian density L of Eq. (1) again, one
can obtain the effective Hamiltonian operator of � hypernu-
clei by doing the general Legendre transformation,

Ĥ ≡ T̂ +
∑

ϕ

V̂ϕ

=
∫

dx
∑

B

ψ̄B(x)(−iγ · ∇ + MB)ψB(x)

+ 1

2

∫
dx
∑

B

∑
ϕ

ψ̄B(x)ψB(x)GϕB(x)ϕ(x), (16)

with the operators T̂ for the kinetic and V̂ϕ for the potential
energy. Substituting ϕ(x) in Eqs. (13) into above expres-
sion, the potential energy one V̂ϕ is then described by the
two-body interactions mediated by the exchange of mesons,
associating with various meson (photon)-nucleon (hyperon)
couplings, namely, σ -S, ω-V, ρ-V, ρ-T, ρ-VT, π -PV, and A-V,
see Ref. [134] for details. For the isovector �ρμ and �π mesons,
GϕB(x)ϕ(x) involves the scalar product �τ · �τ of isospin, while
it implies the sum over four-vector index μ additionally for the
vector ones ωμ, �ρμ, and Aμ. For the ground-state properties
of � hypernuclei discussed here, the maximum energy differ-
ence between occupied states could be small compared to the
masses of the exchanged mesons. As a result, the retardation
effects, namely the time component of the four-momentum
carried by the mesons and photon, are ignored in current RHF
approaches as a simplifying assumption. This assumption is
generally applicable to the σ -, ω-, and ρ-induced interactions
since the energy transfers involved are small compared with
their masses, while to a lesser extent for the pion. It has been
discussed that the induced effect could be compensated partly
by an appropriate change of meson parameters, which are
not well determined, but the issue should still be aware and
need an address in future RHF studies, i.e., by introducing a
reliable form factor description in the π -induced interaction
[167–169]. Correspondingly, the meson (photon) propagators
Dφ (DA) read as

Dφ (x, x′) = 1

4π

e−mφ |x−x′|

|x − x′| , DA(x, x′) = 1

4π

1

|x − x′| .
(17)

The potential energy operator V̂ϕ is then derived by substi-
tuting the meson- or photon-field operator ϕ(x) of Eq. (13)
into Eq. (16). Taking the σ field as an example, the potential
operator V̂σ then becomes

V̂σ = −1

2

∑
BB′

∫∫
dxdx′[ψ̄BGσBψB]xDσ (x, x′)[ψ̄B′GσB′ψB′ ]x′ .

(18)

For the isoscalar mesons, the indices BB′ represent not only
NN but the N� and �� interactions, while for the rest it
is natural that only NN channel is contained. It is clear that
baryons are coupled to each other at the separated space
points x and x′ to generate the two-body interaction potential
effectively, propagating via various meson/photon exchanges.
Correspondingly, the vertex functionals are separated and ex-
pressed as products of two space points.

For completeness, one should consider Dirac spinors with
both positive and negative energy solutions when second
quantizing baryon field operators. Although there have been
efforts within the RHF framework to consider the Dirac sea
effect in infinite baryon and meson system [170–172], the
renormalization of Dirac sea for finite nuclei and at finite den-
sities is still hardly clarified and solved. As done by previous
RHF works for finite nuclei, the contribution of Dirac sea is
then ignored here, and the role of sea could partly be involved
by adjusting the effective RHF interactions [169,173,174].
Within the no-sea approximation, the baryon field operator ψB

is therefore expanded on the positive energy set as

ψB(x) =
∑

i

fi(x)e−iεit ci, (19a)

ψ
†
B(x) =

∑
i

f †
i (x)eiεit c†

i . (19b)

where fi is the Dirac spinor, ci and c†
i are the annihilation

and creation operators for a state i. In accordance, the energy
functional E is obtained by taking the expectation value of the
Hamiltonian with respect to a trial ground state |�0〉,

E = 〈�0|Ĥ |�0〉 = 〈�0|T̂ |�0〉 +
∑

ϕ

〈�0|V̂ϕ|�0〉. (20)

In the Hartree-Fock approximation, |�0〉 is chosen to be

|�0〉 =
A∏

i=1

c†
i |0〉, with 〈�0|�0〉 = 1, (21)

where A is the mass number of the hypernucleus, and |0〉 is the
vacuum state. Then the binding energy of a � hypernucleus is
written by

E =
∑

B

Ekin,B +
∑

B

(
ED

σ,B + ED
ω,B + EE

σ,B + EE
ω,B

)
+ Eρ,N + Eπ,N + Ee.m. + Ec.m. + Epair, (22)

where Ekin,B denotes the kinetic energy functional of baryons.
ED

σ,B and ED
ω,B correspond to the Hartree terms of the potential

energy functional from σ and ω, while EE
σ,B and EE

ω,B represent
the Fock terms. In addition, the contributions from ρ, π , and
A are denoted by Eρ,N , Eπ,N , and Ee.m., respectively. The term
of Ec.m. is owing to the center-of-mass correction to the mean
field, and Epair considers the contribution from nucleon pairing
correlations.

In the density-dependent RHF approach, the meson-baryon
coupling strengths are regarded as a function of baryon den-
sity ρb. The idea of such a treatment as an effective field
theory of nuclear many-body system comes from the Dirac
Brueckner-Hartree-Fock (DBHF) calculation based on the
one-boson-exchange potential, which takes the in-medium
effects of nuclear force into account in terms of the density
dependence of nucleon self-energies via relativistic G matrix
[131]. In general, the coupling strengths can be written by

gφB(ρb) = gφB(0) fφB(ξ ) or gφB(ρb) = gφB(0)e−aφBξ ,

(23)
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where ξ = ρb/ρ0 with ρ0 the saturation density of nuclear
matter, and

fφB(ξ ) = aφB
1 + bφB(ξ + dφB)2

1 + cφB(ξ + dφB)2
. (24)

In the above expression, gφB(0) corresponds to the free cou-
pling constant at ρb = 0. By fitting the coupling strengths to
reproduce the nucleon self-energies from the DBHF calcu-
lations as well as the properties of nuclear matter and the
selected finite nuclei, it paves an efficient way of model-
ing the in-medium effects of nuclear force [155,175–177].
Correspondingly, the meson-baryon vertex functions become
density dependent as well, where two vertices are dressed
by their separate density circumstance since two baryons are
actually located at different space points.

B. RHF energy functional of spherical � hypernuclei

In the following, the description of � hypernuclei is
restricted to the spherical symmetry. Correspondingly, the
complete set of good quantum numbers contains the princi-
ple one n, the total angular momentum j and its projection
m, as well as the parity π = (−1)l (l is the orbital angular
momentum). By taking the quantum number κ to denote the
angular momentum j and the parity π , i.e., κ = ±( j + 1/2)
and π = (−1)κsign(κ ), the Dirac spinor fi(x) of the nucleon
or hyperon in Eq. (19a) has the following form with spherical
coordinate (r, ϑ, ϕ):

fnκm(x) = 1

r

(
iGa(r)�κm(ϑ, ϕ)
Fa(r)�−κm(ϑ, ϕ)

)
, (25)

where the index a consists of the set of quantum numbers
(nκ ) = (n jl ), and �κm is the spherical spinor [178]. Mean-
while, the propagators in Eq. (13) can be expanded in terms
of spherical Bessel and spherical harmonic functions as

Dφ (x, x′) =
∞∑

L=0

L∑
M=−L

(−1)MRφ
LL(r, r′)YLM (�)YL−M (�′),

(26)

where � = (ϑ, ϕ), and RLL contains the modified Bessel
functions I and K as [178,179]

Rφ
LL(r, r′) =

√
1

rr′ IL+ 1
2
(mφr<)KL+ 1

2
(mφr>), (27)

RA
LL(r, r′) = 1

2L + 1

rL
<

rL+1
>

. (28)

Hence, restricted to the spherical symmetry, these explicit
Dirac spinor and propagators are implemented to deduce var-
ious components of the hypernuclear energy functional. The
baryon’s kinetic energy part reads as

Ekin,B =
∫

dr
∑

a

ĵ2
a,B(Ga,B Fa,B)

×
(− d

dr Fa,B + κa,B

r Fa,B + MBGa,B

+ d
dr Ga,B + κa,B

r Ga,B − MBFa,B

)
− ABMB,

(29)

where ĵ2
a,B = 2 ja,B + 1. The � hyperon, interacting only via

the exchange of σ and ω mesons, results in an additional
contribution to the potential energy via the isoscalar channel,
which is then divided into the direct and exchange terms in the
RHF theory. The direct one can be written as

ED
σ,B = 2π

∫
r2drρs,B(r)�σ

S,B(r), (30a)

ED
ω,B = 2π

∫
r2drρb,B(r)�ω

0,B(r). (30b)

Here ρs,B and ρb,B define the scalar and baryon density,
respectively, which can be calculated by the radial wave func-
tion of nucleon or hyperon,

ρs,N ≡ 1

4πr2

∑
i=n,p

∑
a

ĵ2
a,i

[
G2

a,i(r) − F 2
a,i(r)

]
, (31a)

ρb,N ≡ 1

4πr2

∑
i=n,p

∑
a

ĵ2
a,i

[
G2

a,i(r) + F 2
a,i(r)

]
, (31b)

ρs,� ≡ 1

4πr2

∑
a

ĵ2
a,�

[
G2

a,�(r) − F 2
a,�(r)

]
, (31c)

ρb,� ≡ 1

4πr2

∑
a

ĵ2
a,�

[
G2

a,�(r) + F 2
a,�(r)

]
. (31d)

Then the total baryon density goes to

ρb = ρb,N + ρb,�. (32)

The self-energies of nucleon or hyperon include scalar one
�S,B and vector one �0,B, in which the coupling of isoscalar
mesons contributes as follows,

�σ
S,B(r) ≡

∑
B′

�σ
S,BB′

= −gσB(r)
∑

B′

∫
r′2dr′gσB′ (r′)ρs,B′ (r′)Rσ

00(r, r′),

(33a)

�ω
0,B(r) ≡

∑
B′

�ω
0,BB′

= +gωB(r)
∑

B′

∫
r′2dr′gωB′ (r′)ρb,B′ (r′)Rω

00(r, r′).

(33b)

Such kind of decomposition of the self-energies is nontriv-
ial, since now the direct terms of isoscalar potential in Eq. (30)
are separated so that the mechanism of the equilibrium of nu-
clear dynamics via the Fock diagram can be revealed readily
in the next section.

ED
σ,N = ED

σ,NN + ED
σ,N�, ED

σ,� = ED
σ,�N + ED

σ,��, (34)

ED
ω,N = ED

ω,NN + ED
ω,N�, ED

ω,� = ED
ω,�N + ED

ω,��. (35)
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The contribution of the Fock diagram to the energy func-
tional can be written in a general form as [134]

EE
φ,B = 1

2

∫
drdr′ ∑

a

ĵ2
a,B

4π
(Ga,B Fa,B)r

×
(

Y φ
Ga,B

Y φ
Fa,B

X φ
Ga,B

X φ
Fa,B

)
r,r′

(
Ga,B

Fa,B

)
r′
. (36)

To give the Hartree terms Eqs. (30) and Fock term Eq. (36),
it is further seen that the interaction integral are symmetric in
the space point r and r′, which involve naturally the influence
of density circumstance via a mean-field picture.

For vector mesons, notice that EE
φ,B should be the sum over

their time and space components. For the �-involved part of
the exchange (Fock) term, only the � hyperon itself could take
part because only isoscalar couplings remain in φ, namely
EE

φ,� = EE
φ,��. To express the nonlocal self-energies YG, YF ,

XG, and XF in compact form, we introduce several nonlocal
densities R as the source terms,

R++
b,B (r, r′) = ĵ2

b,BGb,B(r)Gb,B(r′), (37a)

R+−
b,B (r, r′) = ĵ2

b,BGb,B(r)Fb,B(r′), (37b)

R−+
b,B (r, r′) = ĵ2

b,BFb,B(r)Gb,B(r′), (37c)

R−−
b,B (r, r′) = ĵ2

b,BFb,B(r)Fb,B(r′). (37d)

Thus for the σ − S coupling, the nonlocal self-energies are
assembled as follows:

Y σ
Ga,B

= +
∑

b

J σ
abR++

b,B (r, r′)gσB(r)gσB(r′)Dσ
YG

, (38a)

Y σ
Fa,B

= −
∑

b

J σ
abR+−

b,B (r, r′)gσB(r)gσB(r′)Dσ
YF

, (38b)

X σ
Ga,B

= −
∑

b

J σ
abR−+

b,B (r, r′)gσB(r)gσB(r′)Dσ
XG

, (38c)

X σ
Fa,B

= +
∑

b

J σ
abR−−

b,B (r, r′)gσB(r)gσB(r′)Dσ
XF

, (38d)

where the isospin factor Jab is δτaτb for the isoscalar
channel [148], and the Clebsch-Gordan coefficients and prop-
agators in nonlocal terms are dealt with

Dσ
YG

= Dσ
YF

= Dσ
XG

= Dσ
XF

=
′∑
L

(
CL0

ja
1
2 jb− 1

2

)2
Rσ

LL(r, r′). (39)

Here it should be noticed that EE
φ,�� could act even if there is a

unique � hyperon in a � hypernucleus, which is not attributed
directly to the interplay between different � hyperons but
rather the effect via hyperonic field. Moreover, for the ground
state of single-� hypernuclei where � occupies the orbit
1s1/2, one can further confirm a relation between ED

σ,�� and
EE

σ,��, namely, EE
σ,�� = −ED

σ,��/2, by just considering the
fact that the C-G coefficients of Fock terms in Eq. (39) are
(C00

1
2

1
2

1
2 − 1

2
)2 = 1

2 .

For the time component of vector (ω − V and ρ − V ) cou-
plings, the expressions can be obtained by replacing simply
the coupling strength gφB and the expansion term Rφ

LL of the
propagator in above σ − S case, as well as reversing the sign
of YG and XF . While for the spatial component of vector
couplings, the results need to be regrouped, such as for ω − V ,

Y ω
Ga,B

= +
∑

b

J ω
abR−−

b,B (r, r′)gωB(r)gωB(r′)Dω
YG

, (40a)

Y ω
Fa,B

= +
∑

b

J ω
abR−+

b,B (r, r′)gωB(r)gωB(r′)Dω
YF

, (40b)

X ω
Ga,B

= +
∑

b

J ω
abR+−

b,B (r, r′)gωB(r)gωB(r′)Dω
XG

, (40c)

X ω
Fa,B

= +
∑

b

J ω
abR++

b,B (r, r′)gωB(r)gωB(r′)Dω
XF

, (40d)

while the corresponding coefficient’s terms become

Dω
YG

= Dω
XF

=
′′∑
L

[
2
(
CL0

la0lb0

)2 − (
CL0

ja
1
2 jb− 1

2

)2]
Rω

LL(r, r′),

(41a)

Dω
YF

= Dω
XG

=
′′∑
L

(
CL0

ja
1
2 jb− 1

2

)2
Rω

LL(r, r′), (41b)

where the prime on the summation
∑′

L(
∑′′

L ) indicates that
L + la + lb must be even (odd) in order to keep the value
nonzero. The value of L is truncated by the coupling of angu-
lar momentum naturally. Similarly, we can obtain the energy
functional for the spatial components of ρ − V and A − V by
replacing the expression with their expansion of propagator
and coupling constant. For the case of π − PV coupling,
the time component contribution drops out because the re-
tardation effect is neglected, and the contribution of spatial
components is relatively complicated. Since the inclusion of
� hyperon has nothing to do with the CDF results of isovector
coupling channels, the details of nucleons’ contribution are
omitted here and could be found in Ref. [134].

Finally, the last two terms in the total energy functional of
Eq. (22) are obtained in the following way. The center-of-mass
(c.m.) correction is taken microscopically as

Ec.m. = − 1

2MT

〈
P̂2

c.m.

〉
, (42)

where MT = ∑
B MB = AN MN + A�M�, and 〈P̂2

c.m.〉 is the
expectation value of the square of Pc.m., while Pc.m. is the
total momentum operator in the c.m. frame [180,181]. The
pairing energy Epair is treated under the BCS approximation
for the open-shell nuclei, where the finite-range Gogny force
is chosen as the pairing interaction [134,148,182,187]. Con-
sistent with the expansion of the propagator in Eq. (26), the
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Gogny-type pairing force is expended in spherical coordinate
as well,

V (r, r′) = 2π
∑

χ=1,2

(Aχ + DχPσ )
∞∑

L=0

Vχ,L(r, r′)

×
L∑

M=−L

YLM (�)Y ∗
LM (�′), (43)

with Aχ = Wχ − HχPτ , Dχ = Bχ − MχPτ , associated with
the parameters and operators of the traditional Gogny force,
and Vχ,L(r, r′) the radial part, see Ref. [134] for details. For
given orbits a and b, the pairing interaction matrix element
V pp

ab can be derived as

V pp
ab =

∫
drdr′(KG

a,b KF
a,b

)
r

(
Ȳ G Ȳ F

X̄ G X̄ F

)
r,r′

(
KG

a,b

KF
a,b

)
r′
, (44)

where KG
a,b and KF

a,b read as

KG
a,b(r) = ĵa,B ĵb,BGa,B(r)Gb,B(r),

KF
a,b(r) = ĵa,B ĵb,BFa,B(r)Fb,B(r), (45)

and the nonlocal terms Ȳ G, Ȳ F , X̄ G, and X̄ F are written in the
following form:

Ȳ G = X̄ F = 1

2

∑
χ

′∑
L

Vχ,L(r, r′)

×
[
(Aχ + Dχ )

(
CL0

ja
1
2 jb− 1

2

)2 − Dχ

(
CL0

la0lb0

)2
]
,

(46)

Ȳ F = X̄ G =1

2

∑
χ

′∑
L

Vχ,L(r, r′)(Aχ + Dχ )
(
CL0

ja
1
2 jb− 1

2

)2
.

(47)

Then with the pairing gap �a of state a derived from the gap
equations,

�a = −1

4

∑
b

V pp
ab

�b√
(εb − λ)2 + �2

b

, (48)

where the chemical potential λ is introduced for parti-
cle number conservation, the pairing energy Epair is finally
calculated by

Epair = −1

2

∑
a

�auava, (49)

where v2
a represents the occupation probabilities and u2

a +
v2

a = 1. The single-particle (nucleon or hyperon) levels need
to be determined by solving the Dirac equation. Within the
RHF theory for spherical nuclei, the radial Dirac equations,
i.e., the relativistic Hartree-Fock equations, are expressed as
the coupled differential-integral equations. It is convenient
to define the total nonlocal self-energies Xa,B and Ya,B as
[148,183](

Ya,B(r)
Xa,B(r)

)
=
∫

dr′ ∑
φ

(
Y φ

Ga,B
Y φ

Fa,B

X φ
Ga,B

X φ
Fa,B

)
r,r′

(
Ga,B

Fa,B

)
r′
. (50)

Therefore, one can rewrite the Dirac equation in a quasilocal-
ized form as

εa,B

(
Ga,B(r)
Fa,B(r)

)

=

⎛
⎜⎝ �B

+(r) − d

dr
+ κa,B

r
+ �B

T (r)
d

dr
+ κa,B

r
+ �B

T (r) −[2MB − �B
−(r)]

⎞
⎟⎠

×
(

Ga,B(r)
Fa,B(r)

)
+
(

Ya,B(r)
Xa,B(r)

)
, (51)

which actually can be solved iteratively in combination with
Eq. (50), see Appendix C of Ref. [169]. And here the local
self-energies �B

± = �0,B ± �S,B composed by the vector and
scalar terms, and �B

T contains the contribution from the direct
terms of tensor part [148]. The scalar self-energy �S,B = �σ

S,B,
and the time component of the vector one has

�0,B(r) =
∑

φ

�
φ

0,B(r) + �R(r), (52)

where φ = ω, ρ for nucleons (B = N), and φ = ω for � hy-
perons (B = �). In addition, �R is the rearrangement term due
to the density dependence of the coupling constant, which can
be divided into a direct �D

R and an exchange part �E
R ,

�R(r) = �D
R (r) + �E

R (r) =
∑

φ

[
�D

R,φ (r) + �E
R,φ (r)

]
. (53)

Here �D
R,φ and �E

R,φ contain the summation over all baryons
for the isoscalar case of φ = σ, ω, but only over nucleons for
the isovector one. For example, the direct term from σ − S
coupling is shown as

�D
R,σ (r) =

∑
B

1

gσB

∂gσB

∂ρb
ρs,B�σ

S,B(r). (54)

By introducing the nonlocal self-energy X φ
a,B and Y φ

a,B of each
meson coupling channel like in Eq. (50), the exchange contri-
bution to the rearrangement term reads

�E
R,φ (r) =

∑
B

1

gφB

∂gφB

∂ρb

∑
a

ĵ2
a,B

4πr2

(
Ga,BY φ

a,B + Fa,BX φ
a,B

)
r
.

(55)

C. Spin-orbit coupling potential of � hyperon

To study later the spin-orbit splittings, the radial Dirac
equation in the RHF theory could be derived further to get
a Schrödinger-like equation for the upper component Ga,B

[183]. For the � hyperon, one can obtain

εa,�Ga,� =
{

− 1

M+

d2

dr2
− 1

M+

[
VCB,� + VSO,�

+ V1,�

d

dr
+ V2,�

]
+ ��

+

}
Ga,�, (56)
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where M+ = εa,� + 2M� − ��
− . The induced items in the

formula are defined as follows:

VCB,� = −κa,�(κa,� + 1)

r2
, (57a)

VSO,� = −κa,�

r

[
1

M ′+

d

dr
M ′

+ + (
XGa,�

+ YFa,�

)]
, (57b)

V1,� = − 1

M ′+

d

dr
M ′

+ + (
XGa,�

− YFa,�

)
, (57c)

V2,� = −XGa,�

M ′+

d

dr
M ′

+ + d

dr
XGa,�

−XGa,�
YFa,�

− M+YGa,�
+ XFa,�

(
��

+ − εa,�

)
.

(57d)

Here we introduce M ′
+ ≡ M+ − XFa,�

. The relevant terms
of the nonlocal self-energies are given by sum over all
coupling channels, e.g., XFa,�

= ∑
φ X φ

Fa,�
. For the single-�

hypernuclei, the nonlocal self-energies of hyperon could be
smaller than the local ones considerably. Hence, if we could
neglect them, the above Schrödinger-like equation can be
reduced to the familiar expression taken in RMF theory
[74,184], shown as{
− 1

M+(r)

d2

dr2
+ 1

M2+(r)

dM+(r)

dr

d

dr
+ 1

M+(r)

κa,�(κa,� + 1)

r2

+ 1

M2+(r)

dM+(r)

dr

κa,�

r
+ ��

+ (r)

}
Ga,�(r) = εa,�Ga,�(r),

(58)

where the term that is proportional to κa,�(κa,� + 1) =
la,�(la,� + 1) corresponds to the centrifugal barrier as com-
pared to the Schrödinger equation. The spin-orbit coupling
potential of � hyperon is simplified as

VSO,� = 1

M2+(r)

dM+(r)

dr

κa,�

r
, (59)

which consequently leads to the spin-orbit splitting in the
single-particle spectrum of hyperon.

III. RESULTS AND DISCUSSION

Now we can use the RHF theory to investigate the bulk and
single-particle properties of the � hypernuclei. Especially for
the simplest hypernuclear system with single �, the role of
the Fock terms via the extra �-hyperon degree of freedom
will be illustrated in this section. For the NN interaction, the
RHF effective interactions PKO1 [155], PKO2, and PKO3
[132] are utilized in the calculation, in comparison with the
RMF effective functional PKDD [185]. The Dirac equation is
solved in a radial box size of R = 20 fm with a step of
0.1 fm. For the open-shell nuclei, the pairing correlation is
considered within the BCS method. Here it is treated only
for nn and pp pairing with the Gogny interaction D1S [186],
see Refs. [134,148,182,187] for details how a noncovariant
pairing functional is implemented into the covariant approach.
In addition, the blocking effect is taken into account for
the last valence nucleon or � hyperon [188,189]. For each

TABLE I. The σ -� coupling strengths gσ�/gσN fitted for CDF
effective interactions by minimizing the root-mean-square deviation
� (in MeV) from the experiment values of � separation energies
of 16

� O, 40
� Ca and 208

� Pb, where the ω-� coupling is fixed to be
gω�/gωN = 0.666.

PKO1-�1 PKO2-�1 PKO3-�1 PKDD-�1

gσ�/gσN 0.596 0.591 0.594 0.620
� 0.265 0.260 0.407 0.347

hypernucleus, we check the values of binding energy by
blocking different nucleon/hyperon orbits near its Fermi
surface, and select the one with the lowest binding as its
ground state. Correspondingly, it is selected that neutron lev-
els ν1p1/2, ν1d3/2, and ν3p1/2 are blocked for the ground
states of 16

� O, 40
� Ca, and 208

� Pb, which we will discussed here-
after, respectively. Thus, the analysis of the � hypernuclei
could be performed if the �N effective interaction is further
determined.

A. � separation energies and �N effective interaction

The �N interaction in recent models is related to determine
the coupling strengths between σ or ω meson and � hyperon.
For convenience, the ratio between meson-� and meson-
nucleon couplings gφ�/gφN is introduced. As the utilized RHF
NN effective interactions are density dependent, the σ -� and
ω-� coupling strengths thus evolve with the baryon density
as well. The mass of � hyperon takes M� = 1115.6 MeV.
The isoscalar-vector coupling strength gω�/gωN is fixed to
be 0.666 according to the näive quark model [190]. Then
the isoscalar-scalar coupling strength gσ�/gσN is adjusted to
reproduce the experimental � separation energies B� [16], by
assuming � in the 1s1/2 state of hypernuclei 16

� O, 40
� Ca, and

208
� Pb, while B� is defined by the energy difference

B�

(A

�
Z
) = E (A−1Z ) − E

(A

�
Z
)
, (60)

where the binding energy E of the referred nuclei is gained
from Eq. (22).

For the selected RHF and RMF functionals, the σ -� cou-
pling strengths gσ�/gσN is given in Table I, by minimizing the
root-mean-square deviation � for the � separation energies
between theoretical calculation and experimental values,

� ≡
√√√√ 1

N

N∑
i=1

(
Bexp.

�,i − Bcal.
�,i

)2
. (61)

The induced �N effective interactions are named by �1.
All of them reproduce the data of 16

� O, 40
� Ca, and 208

� Pb well
with comparable deviation �, while PKO2-�1 gives the best
agreement in all. To be detailed, the binding energies E (A

�Z ) of
the selected hypernuclei and E (A−1Z ) of their nucleonic cores
are shown in Table II. As compared to the experimental data
[191], the selected CDF effective interactions give the proper
description of the binding energies for the nucleonic core
systems although the odd-nucleon effects are approximated
by a blocking method and the equal filling in valence level of
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TABLE II. The binding energies (in MeV) of the hypernuclei
16
� O, 40

� Ca, and 208
� Pb as well as their nucleonic cores 15O, 39Ca, and

207Pb, which are used to fit the � separation energy in Eq. (60), are
calculated with CDF effective interactions. The referred experiment
data are taken from Ref. [191].

Nucleus Expt. PKO1-�1 PKO2-�1 PKO3-�1 PKDD-�1

15O 113.746 111.955 112.473 113.634 112.276
16
� O 125.911 124.750 125.458 124.776
39Ca 327.369 326.417 324.988 327.423 325.653
40
� Ca 346.423 344.051 346.478 344.739
207Pb 1628.796 1629.062 1628.999 1629.308 1629.431
208
� Pb 1654.946 1655.086 1655.774 1655.241

nucleon. In Table III, the matter radii of the hypernuclei 16
� O,

40
� Ca, and 208

� Pb as well as their nucleonic cores are given ad-
ditionally, where the effect on the size shrinkage is illustrated
clearly with the inclusion of � hyperon [63,83,94].

With the fixed gω�/gωN , it is seen from the Table I that the
ratios of gσ�/gσN in RHF are slightly smaller than PKDD’s
value in RMF. In fact, the values of gφN have been found to be
dropped systematically in RHF with the inclusion of the Fock
terms [159,192]. Thus, the absolute values of gφ�(ρb) in three
RHF models, namely, gσ� and gω�, are sizably suppressed at
various baryon density ρb than one in RMF, so that the nuclear
in-medium balance and the single-particle properties could be
affected by the additional hyperon in hypernuclei.

Except for the � separation energies of 16
� O, 40

� Ca, and
208
� Pb, the obtained CDF functionals are also checked to be
suitable for describing several other � hypernuclei with ex-
perimental data, where � can occupy either in ground state
1s1/2 or excited states with higher angular momentum l�.
Taking PKO1-�1 as an example, the B� result is shown in
Fig. 1, with a relatively large mass range from 12

� C to 208
� Pb.

Since the lack of information on the spin status of � during the
experiments, the calculation performed here just assumes that
� occupies the spin-paralleled state, i.e., j� = l� + 1/2. It is
seen the theoretical predictions in recent models are consistent
quite well with the experiments [16], for both cases of ground
and excited hyperon. Besides, we also checked the single-�
potentials U� at the saturation baryon density in symmet-
ric nuclear matter, which give −30.4 MeV, −30.2 MeV, and
−30.9 MeV for PKO1-�1, PKO2-�1, and PKO3-�1, respec-

TABLE III. The matter radii (in fm) of the hypernuclei 16
� O, 40

� Ca,
and 208

� Pb as well as their nucleonic cores 15O, 39Ca, and 207Pb,
calculated by the CDF effective interactions.

Nucleus PKO1-�1 PKO2-�1 PKO3-�1 PKDD-�1

15O 2.567 2.550 2.577 2.541
16
� O 2.539 2.524 2.537 2.512
39Ca 3.330 3.313 3.334 3.308
40
� Ca 3.303 3.288 3.301 3.283
207Pb 5.589 5.569 5.568 5.589
208
� Pb 5.575 5.556 5.553 5.576

FIG. 1. The calculated � separation energies B� for the single-�
hypernuclei with the RHF effective interaction PKO1-�1 in compar-
ison with the experimental data taken from Refs. [14,16].

tively, in agreement with the empirical value such as from
ab initio calculations [193].

To explore the origin of why the σ -� coupling ratio
gσ�/gσN and its absolute strength gσ� are systematically re-
duced in RHF calculations, it is deserved to comprehend from
a viewpoint of the dynamic nuclear medium. Recently, such
kind of method has been carried out successfully to elucidate
the mechanism of the pseudospin symmetry, the shell evolu-
tion and the liquid-gas phase transition [158–160,162]. With
different treatments of the density dependence of coupling
strengths, the delicate balance between nuclear attraction and
repulsion in medium could change enormously. For � hy-
pernuclei, the dynamical equilibrium effects in nucleon’s and
�′s channel couple each other and interplay via the meson-
exchange. It is much easier to enlighten these effects within a
light single-� hypernucleus due to the relatively larger ratio
of hyperon to nucleon numbers than those in heavier hyper-
nuclei. With even numbers of proton and neutron in nucleon
part, therefore, the single-� hypernucleus 13

� C can be taken as
a good example to proceed by separating its energy functional
with various components, as organized in Table IV. Here
Eothers includes the energy contribution from the isovector
meson-nucleon couplings, the Coulomb field, the pairing, and
the center-of-mass corrections.

As one can see from Table IV, the binding energy is
dominated by the cancellation between strong attraction (Eσ )
and strong repulsion (Eω) from the isoscalar meson coupling
channels [159]. First, let us compare the values of the “Nu-
cleon” channel with RHF functional PKO1-�1 to RMF one
PKDD-�1. Because of the limited � number as well as
the isospin difference between hyperon and nucleon, the �

hyperon-induced mean field (or self-energy) in a single-�
hypernucleus impacts little on the nucleon field, and could be
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TABLE IV. The kinetic and potential energies (in MeV) in various channels for the single-� hypernucleus 13
� C. The results are given by

the RHF effective interactions PKO1-�1, PKO1-�1′ and the RMF one PKDD-�1. Specifically, the terms of Eφ,�� correspond to the potential
energy originated from �� interaction, see Eqs. (34), (35) and (36) for details.

PKO1-�1 PKO1-�1′ PKDD-�1

13
� C Nucleon Lambda (Eφ,��) Nucleon Lambda (Eφ,��) Nucleon Lambda (Eφ,��)

Ekin 200.88 7.90 − 202.49 9.80 − 184.51 8.18 −
ED

σ −1344.62 −72.73 (−3.83) −1377.27 −86.14 (−5.44) −1694.45 −99.84 (−5.86)
ED

ω 1003.35 59.47 (3.44) 1029.76 68.23 (4.60) 1415.49 87.64 (5.43)
EE

σ 284.30 1.92 (1.92) 288.56 2.72 (2.72) 0.00 0.00 (0.00)
EE

ω −200.23 −1.68 (−1.68) −203.18 −2.23 (−2.23) 0.00 0.00 (0.00)
Eothers −39.27 −0.73 − −39.61 −0.92 − −0.41 −0.77 −

−95.59 −5.85 −99.25 −8.54 −94.86 −4.79
Sum −101.44 −107.79 −99.65

regarded as a perturbation effect. Thus, the dynamical equi-
librium in the nucleon channel is dominated by the nucleons
themselves. As a result, RHF provides a stronger residual
attraction given by ED

σ + ED
ω from the direct isoscalar terms

than RMF, which help to cancel the extra repulsion EE
σ + EE

ω

introduced by the exchange diagram and correspondingly per-
sist in the balance of nucleons.

However, the situation in the hyperon channel (columns
marked by “Lambda” in Table IV) is drastically changed. The
inclusion of � hyperon inside a normal atomic nucleus results
in an extra attractive potential. Despite only one hyperon, �

can contribute a distinct value of the binding energy via the di-
rect terms of isoscalar meson coupling, i.e., ED

σ + ED
ω , because

there are not only � itself but many nucleon friends partici-
pating indeed to dress its self-energies as shown in Eqs. (33a)
and (33b). On the contrary, the contribution from the Fock
terms to �-relevant energy functionals is suppressed critically
since only � itself accounts for the nonlocal self-energy and
then EE

φ,� = EE
φ,��, seeing the values of Eφ,�� in the table.

If one defines a relative ratio of the isoscalar potential energy
between Fock and Hartree channels, written as

χ ≡
∣∣∣∣EE

σ + EE
ω

ED
σ + ED

ω

∣∣∣∣, (62)

it is seen that χN ≈ 24.6% and χ� ≈ 1.8% for PKO1-�1.
Therefore, in the case of single-� hypernuclei, the equilib-
rium of nuclear dynamics in the hyperon channel is controlled
mainly by the direct isoscalar terms, showing a very dif-
ferent mechanism from the nucleon channel. Consequently,
the change of the σ -� coupling strength gσ�/gσN from
PKDD-�1 to PKO1-�1 could be indicated by comparing the
details of their energy functionals.

To clarify separately the role of meson-nucleon and meson-
hyperon coupling strengths on the hypernuclear binding
energy, it is helpful to introduce a tentative CDF functional
named by PKO1-�1′, which adopts the RHF effective interac-
tion PKO1 to give the meson-nucleon coupling strengths but
takes the value of gσ�/gσN = 0.620 in PKDD to determine
the hyperon’s contribution. So the energy differences between
PKDD-�1 and PKO1-�1′ given in Table IV could ascribe to
the alternated meson-nucleon coupling strengths from RMF

to RHF, while the deviations of PKO1-�1′ from PKO1-�1
are associated with the change of gσ�/gσN .

It is shown that in PKO1-�1′ the hypernucleus becomes
more binding owing to both nucleon and � parts in compari-
son with PKDD-�1, leading to a bad description to reproduce
the observed � separation energy within PKO1-�1′. In
fact, the CDF potential energy could be divided into Eφ,NN ,
Eφ,N�, Eφ,�N , and Eφ,�� according to the type of interact-
ing particles, and Eφ,N� = Eφ,�N . It is checked that the total
contribution from nucleons themselves, which includes nu-
cleons’ kinetic energy and the potential via NN channel, is
robust enough against the change of meson-nucleon coupling
strengths from RMF to RHF functional, due to the balance
from the extra exchange diagram. But the N�-relevant terms
differ remarkably, which give Eσ,N� + Eω,N� = −11.78 MeV
in PKDD-�1 and −17.07 MeV in PKO1-�1′. Therefore, as
both affected by Eφ,N�, not only the � binding is enhanced
from −4.79 to −8.54 MeV, but the binding from nucleon
channels reinforces with the � polarization effect, seeing
the Eq. (34) and (35). The failed description of hypernu-
clear binding energy in RHF models by using the RMF’s
value of gσ�/gσN implies that the density dependence of
meson-hyperon coupling strengths may differ tangibly from
meson-nucleon ones, additionally deviate between gσ� and
gω�.

To control the overestimated Eσ,N� + Eω,N� in RHF mod-
els, therefore, a reduction to the meson-hyperon coupling
strength gσ� is necessary, correspondingly an alternation to
the Dirac effective mass M∗

� = M� + �S,�. From PKO1-�1′
to PKO1-�1, the value of gσ�/gσN is slightly weakened, also
as the case for other RHF functionals in Table I, to rebalance
the effective nuclear force with the strangeness degree of free-
dom. Within PKO1-�1, the contribution from Eσ,N� + Eω,N�

is then dropped down to −12.86 MeV so as to get a reasonable
description of the total binding energy for single-� hypernu-
clei, consequently the � separation energy in accord with the
experimental data as well, as seen in Table V.

B. Local self-energies and � spin-orbit splitting

As the � binding energies have been reproduced well in the
selected RHF models, it is now worthwhile to have a look at
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TABLE V. Similar to Table IV but for the contributions to the �

binding energy B� (in MeV) of the single-� hypernucleus 13
� C from

various channels of corresponding energy density functional.

PKO1-�1 PKO1-�1′ PKDD-�1

B� N � N � N �

Ekin −0.94 −7.90 −2.55 −9.80 0.97 −8.18
ED

σ + ED
ω 9.24 13.26 15.48 17.91 7.43 12.20

EE
σ + EE

ω −0.34 −0.24 −1.65 −0.49 0.00 0.00
Eothers −1.76 0.73 −1.42 0.92 −0.92 0.77

6.20 5.85 9.86 8.54 7.48 4.79
Sum

12.05 18.40 12.27

the �′s single-particle properties such as its self-energies and
the energy levels, to illustrate further the influence of the Fock
diagram on �-involved nuclear physics. In Fig. 2, the local �

self-energies ��
+ are exhibited for the single-� hypernuclei

16
� O, 40

� Ca and 208
� Pb. It is found that PKO1-�1′ gives deeper

single-particle potentials than PKDD-�1 when keeping the
same ratio of gσ�/gσN . With the decreased coupling of gσ�,
the distributions of ��

+ in PKO1-�1 become comparable with
ones in PKDD-�1 again, consistent with the trends of the
� binding energies discussed above. The evolved feature of
the equilibrium of nuclear dynamics is represented then by
the dependence of the � self-energy on both in-medium cou-
plings of the meson-nucleon gφN and the meson-hyperon gφ�,
as seen in Eqs. (33a) and (33b).

Although the similar ��
+ is given by the selected RHF and

RMF models, the values of the local self-energy ��
− within

FIG. 2. The � local self-energy ��
+ (r) for the single-� hy-

pernuclei 16
� O, 40

� Ca, and 208
� Pb. The results are calculated by the

RHF effective interactions PKO1-�1, PKO1-�1′ and the RMF one
PKDD-�1.

FIG. 3. The � local self-energy ��
− (r) for the single-� hyper-

nuclei 16
� O, 40

� Ca, and 208
� Pb. The results are calculated by the RHF

effective interaction PKO1-�1 in comparison with the RMF one
PKDD-�1, where the grid pattern denotes their difference. The dot-
ted lines represent the radial density distributions of � states 1p3/2

(green), 1d5/2 (red), and 1 f7/2 (blue) within PKO1-�1.

PKO1-�1 are obviously smaller than those in PKDD-�1, as
well as its radial slope around the surface of hypernuclei,
which are plotted in Fig. 3 for 16

� O, 40
� Ca, and 208

� Pb, respec-
tively. When the Fock diagram of NN and �� is introduced
in CDF approaches, the N� coupling changes simultaneously.
Therefore, the agreements of ��

+ within RHF and RMF have
no choice but to cause a considerable deviation of ��

− , high-
lighted by the yellow grid pattern in the figure, due to the
opposite sign of the isoscalar �S,� appeared in ��

+ and ��
− .

With the suppressed gσ� couplings, the RHF functionals then
give smaller ��

− than RMF one. From Eq. (59), the spin-orbit
coupling potential of � hyperon is determined actually by
the radial derivative of M+, correspondingly of ��

− , so it
is expected that the discrepancy of ��

− with different CDF
functionals affects explicitly their performance in describing
the � spin-orbit splitting.

The hyperon’s spin-orbit splitting can be estimated by the
difference of � single-particle energies between a couple of
spin partner states, which is

�E�
SO ≡ ε j�=l�−1/2 − ε j�=l�+1/2. (63)

According to the Schrödinger-like equation in Eq. (58), �E�
SO

is mainly correlated with the spin-orbit coupling potential
VSO,� since the spin partners contribute the similar values to
other terms [74]. As much smaller in magnitude than the local
terms, the influence of the nonlocal self-energies of hyperon
on VSO,� are ignored in the following discussions. Taking
the ground state of 16

� O, 40
� Ca, and 208

� Pb as examples, the
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FIG. 4. The spin-orbit splittings of � spin partner states 1p,
1d , and 1 f for the ground state of single-� hypernuclei 16

� O, 40
� Ca,

and 208
� Pb. The results are calculated by the RHF effective interac-

tion PKO1-�1 (values in black) in comparison with the RMF one
PKDD-�1 (values in violet).

calculated spin-orbit splittings for the spin partners 1p, 1d ,
and 1 f of � hyperon are depicted in Fig. 4.

It is clear in Fig. 4 that the � spin-orbit splitting given
by the RHF functional PKO1-�1 is systematically lower
than the RMF’s PKDD-�1, complying with the fact that in
the RHF case there are smaller values of ��

− and effective
spin-orbit coupling potential VSO,�. Thus, the inclusion of
relativistic Fock diagram in the CDF framework, which alters
the equilibrium of nuclear dynamics, impacts enormously the
single-particle properties of hypernuclei. In addition, it is seen
that the values of �E�

SO for �′s 1p partners decrease gradually
from 16

� O to 208
� Pb in both RHF and RMF cases, which could

be explained by plotting the radial density distributions of �′s
1p states as shown in green dotted lines in Fig. 3. In fact,
the upper components of the radial wave functions, which
dominate the density profile, are nearly identical to each other
in the spin partner states [137], so the values are just given
for 1p3/2. From 16

� O to 208
� Pb, the density peak is found to

move from the surface to the interior of the hypernucleus,
where the radial slope of ��

− evolves gradually so that VSO,�

of � hyperon drops down correspondingly. Besides, a similar
analysis is suitable for the evolution of �E�

SO in the spin
partner states of 208

� Pb, where the increase of �E�
SO from 1p

to 1 f is related to the density peak approaching closely to the
surface.

It is generally believed that the energy splitting between
spin partner states in single-� hypernuclei is very small
in comparison with that for nucleons [120–124]. From the
obtained RHF functionals here, it is still difficult to give
a comparable value to the experimental or empirical data
although quenching effects in � spin-orbit splitting are al-
ready gained in RHF calculations, e.g., �E�

SO ≈ 1.181 MeV
in PKO1-�1 for 1p partners of 13

� C. Theoretically, there ex-
ist several mechanisms to reduce the predicted �E�

SO such
as the SU(3) symmetry breaking and the tensor coupling
[126,194], in CDF approaches, which could be involved by

TABLE VI. The series of CDF effective interactions obtained by
alternating the ω-� coupling constant gω�/gωN from 0.3–0.8 (for
convenience marked by the suffix “x”). The σ -� couplings gσ�/gσN

are fitted by minimizing the root-mean-square deviation � (in MeV)
from the experiment values of � separation energies of 16

� O, 40
� Ca,

and 208
� Pb.

gω�/gωN 0.3 0.4 0.5 0.6 0.7 0.8

gσ�/gσN 0.334 0.405 0.477 0.549 0.621 0.692
PKO1-�x

� 0.936 0.706 0.495 0.324 0.263 0.356

gσ�/gσN 0.334 0.404 0.474 0.545 0.614 0.685
PKO2-�x

� 0.970 0.746 0.534 0.368 0.240 0.289

gσ�/gσN 0.331 0.403 0.475 0.546 0.618 0.690
PKO3-�x

� 0.735 0.543 0.400 0.362 0.447 0.599

gσ�/gσN 0.322 0.403 0.485 0.566 0.647 0.729
PKDD-�x

� 1.150 0.932 0.709 0.487 0.280 0.162

changing their effective interactions. In fact, it is found that
a good linear correlation exists in RMF models between two
ratios gσ�/gσN and gω�/gωN [104,195,196]. Thus, the single-
particle properties of �-hypernuclei could be adjusted by
evolving the meson-hyperon coupling strengths while main-
taining the well-reproduced bulk properties.

To follow this idea, we carried out the fitting procedure
of �-relevant parameters again but release the constraint on
the vector coupling gω�/gωN , varying from 0.8–0.3. Then the
scalar coupling strength gσ�/gσN is determined by reproduc-
ing the experimental � separation energies of hypernuclei in
the same way as �1 in Table I. The obtained �x series of CDF
functionals for the single-� hypernuclei are listed in Table VI.
With decreasing ratio of gφ�/gφN , the root-mean-square de-
viation � raises to a certain extent, resulting in somewhat
worse predictions to the � separation energies. Focusing on
their role in � single-particle properties, these series of CDF
functionals can be used to evolve the hyperon’s spin-orbit
splitting. The results for � spin partners 1p of 16

� O, 40
� Ca, and

208
� Pb are shown in Fig. 5.

From Fig. 5, it is clear that the �1p spin-orbit splitting goes
down enormously as the meson-hyperon coupling strength
gω�/gωN decreases, especially for the light hypernucleus 16

� O.
In comparison with PKDD-�x, PKO1-�x predicts smaller
�E�

SO at the same value of gω�/gωN . From the literature,
the value of �1p splitting for 16

� O is estimated empirically
around 300 � �E�

SO � 600 keV [197]. As seen in the figure,
PKO1-�x enter into such an area (the yellow grid pattern)
earlier than PKDD-�x when gω�/gωN decreases. Thus, to
comply with the empirical constraint the RHF models give
a larger parameter space of meson-hyperon couplings, which
could be gω�/gωN � 0.3 and gσ�/gσN � 0.334 for PKO1
functionals. Moreover, it is manifested that the predicted split-
ting from two functionals would approach each other when
the meson-hyperon coupling strengths gφ� weaken, which
is attributed to the fact that the hyperon-induced mean field
and correspondingly the self-energy ��

− is eliminated with
decreasing coupling, and so is its disparity between different
functionals.
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FIG. 5. The spin-orbit splittings of � spin partner state 1p for
the single-� hypernuclei 16

� O, 40
� Ca, and 208

� Pb, evolving with ω-�
coupling strength gω�/gωN . The results are calculated by the RHF
effective interaction series PKO1-�x in comparison with the RMF
one PKDD-�x taken from Table VI, while the empirical value for
16
� O shown with the grid pattern is taken from Ref. [197]. The starred
points are the cases at gω�/gωN = 0.666.

IV. SUMMARY

In summary, the relativistic Hartree-Fock (RHF) theory
has been extended to include the degree of freedom of �

hyperon. Several �-nucleon effective interactions are intro-
duced with density-dependent meson-hyperon couplings, as
their strengths are determined by fitting � separation energies
to the experimental data for single-� hypernuclei. Focusing
on the �-involved effects, the obtained RHF functionals are
adopted to study the role of Fock diagram from a viewpoint
of the equilibrium of nuclear dynamics in � hypernuclei, in
comparison with the RMF calculation.

In the case of single-� hypernuclei, � contributes to the
isoscalar potential energy from both Hartree and Fock chan-
nels, dominated by Eσ,�N + Eω,�N rather than Eσ,�� + Eω,��

since only one hyperon exists. Demonstrated by comparing
a relative ratio χ� of hyperon to χN in nucleon channel,
the equilibrium of nuclear dynamics described by the RHF
models in single-� hypernuclei is clearly deviated from that
in normal atomic nuclei, indicating a different role of Fock
terms via � hyperon from the nucleons. As a consequence of
� implantation, being the overwhelmed �N attraction via the
isoscalar Hartree over the �� exchange terms, RHF models
then ask a systematically reduced σ -� coupling strength gσ�

as compared to RMF’s case so as to rebalance the strangeness-
bearing effective nuclear force.

Turning to the single-particle properties of � hypernuclei,
it is found that the selected RHF functionals give relatively
smaller values of the � local self-energy ��

− and the spin-
orbit coupling potential VSO,� than RMF one PKDD-�1, due

to the reduced σ -� coupling. As a result, these RHF models
predict correspondingly a quenched � spin-orbit splitting in
comparison with the RMF case, examples shown for 16

� O,
40
� Ca, and 208

� Pb. Our work confirms that the inclusion of Fock
diagram in a covariant energy density functional plays an
essential and non-negligible role indeed in understanding the
origin of why the � spin-orbit splitting in hypernuclei is very
small in comparison with that of nucleons.

Finally, a possible way to reduce the uncertainty of such
an issue is discussed, to reproduce the splitting �E�

SO the-
oretically within the selected RHF models. By evolving the
hyperon-relevant couplings gσ� and gω� simultaneously, in-
spired by the discovered linear correlation between them, the
predicted � spin-orbit splitting could decrease efficiently. As
compared to PKDD-�1, the RHF models declare a larger
parameter space of meson-hyperon couplings in order to give
a complied description with the empirical energy splitting
�E�

SO for �1p partners of 16
� O.

It has been pointed out that the tensor coupling embed-
ded in RHF approach plays an important role in treating the
delicate balance in the dynamic nuclear medium and con-
trolling the single-particle characters [159,192]. It is possible
to introduce the ρ- or ω-tensor couplings in both NN and
N� channels in a self-consistent way within RHF, and to
check the induced effect on the � spin-orbit splitting, which
is still ignored in this work and would be considered later
on. Moreover, the exchange of strangeness-bearing mesons
becomes allowed when the Fock diagrams are involved be-
yond the relativistic Hartree ones. Since we are studying the
single-� hypernuclei, the contribution of these strangeness-
bearing mesons to the effective �N interaction is expected to
be relatively smaller than those of σ and ω. However, when
investigating multi-� hypernuclei or infinite hypernuclear
systems in which multihyperons coexist, such strangeness-
bearing mesons couplings may not be negligible and need to
be considered seriously. Hence, the model is expected to be
developed further by including the strangeness-bearing meson
exchange, i.e., K , K∗, κ , and a0(980), for the cases of multi-�
hypernuclei and hyperon star physics.
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