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With the equations of state provided by the newly developed density-dependent relativistic Hartree-Fock
(DDRHF) theory for hadronic matter, the properties of the static and β-equilibrium neutron stars without
hyperons are studied for the first time and compared to the predictions of the relativistic mean-field models
and recent observational data. The influences of Fock terms on properties of asymmetric nuclear matter at high
densities are discussed in detail. Because of the significant contributions from the σ - and ω-exchange terms to
the symmetry energy, large proton fractions in neutron stars are predicted by the DDRHF calculations, which
strongly affect the cooling process of the star. A critical mass of about 1.45M�, close to the limit of 1.5M�
determined by modern soft X-ray data analysis, is obtained by DDRHF with the effective interactions PKO2 and
PKO3 for the occurrence of the direct Urca process in neutron stars. The maximum masses of neutron stars given
by the DDRHF calculations lie between 2.45M� and 2.49M�, which are in reasonable agreement with the high
pulsar mass of (2.08 ± 0.19)M� from PSR B1516 + 02B. It is also found that the mass-radius relations of neutron
stars determined by DDRHF are consistent with the observational data from thermal radiation measurements
in the isolated neutron star RX J1856, quasiperiodic brightness oscillations in the low-mass X-ray binaries 4U
0614 + 09 and 4U 1636-536, and the redshift determined in the low-mass X-ray binary EXO 0748-676.
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I. INTRODUCTION

The investigative territory of nuclear physics has been
enormously expanded with the construction of new accelerator
facilities as well as the development of land- and space-based
observatories. The exploration over the phase diagram of
matter has been extended to the extreme conditions of density,
pressure, and temperature during the past several decades,
and is now one of the hottest topics in both theoretical
and experimental nuclear physics. Around saturation density
nuclear matter properties can be well calibrated by terrestrial
experiments with atomic nuclei, but neutron stars are the
natural laboratories in the unverse for exploring the equation of
state (EoS) of baryonic matter at low temperature and higher
baryonic densities [1–3]. In addition, probing the elliptical
flow and kaon production in heavy-ion collisions provides
extra information for the nuclear EoS at high temperature and
about 2–4.5 times nuclear saturation density [4–6].

As some of the most exotic objects in the universe, neutron
stars play the role of a bridge between nuclear physics and
astrophysics. With the discovery of the neutron in 1932, the
concept of the neutron star were first proposed by Landau [7].
Two years later, the neutron star was deemed to be formed
in supernovae [8]. In the 1960s, the observed radio pulsars
[9] were identified as rotating neutron stars [10]. Currently,
the neutron star is generally considered to have a crustal
structure [11]. Below the atmosphere and envelope surface,
which have negligible mass, the crust extends about 1 to
2 km into the star, which mainly consists of nuclei and free

electrons. With increasing density, the dominant nuclei in the
crust vary from 56Fe to extremely neutron-rich nuclei, and
neutrons may gradually leak out of nuclei to form the neutron
fluid. The outer core (ρ >∼ ρ0/3) of neutron stars is composed
of a soup of nucleons, electrons, and muons. In the inner core,
exotic particles—such as the strangeness-bearing hyperons
and/or Bose condensates (pions or kaons)—may become
abundant, and a transition to a mixed phase of hadronic and
deconfined quark matter becomes possible. Although similar
equations of state at saturation and subsaturation densities are
obtained by various nuclear matter models, their deviations
are very remarkable in the high-density region, which is very
essential in describing and predicting the properties of neutron
stars. Further investigations are therefore necessitated for the
detailed structure over the density range of neutron stars.

The recent observations of neutron stars have been ex-
tensively reviewed (see, e.g., Ref. [12]). The existence of
massive compact stars of 2M� or above is now unveiled
by some evidence. Careful analysis of the Rossi X-ray
Timing Explorer (RXTE) data for the quasiperiodic brightness
oscillations (QPOs) discovered from the low-mass X-ray
binaries (LMXBs) 4U 1636-536 shows that several neutron
stars in LMXBs have gravitational masses between 1.9M� and
possibly 2.1M� [13]. Measurements on millisecond pulsars in
globular cluster NGC 5904 (M5) during 19 years of Arecibo
timing yield M = (2.08 ± 0.19)M� for PSR B1516 + 02B
[14], whereas a much larger pulsar mass of (2.74 ± 0.21)M�
was presented very recently for PSR J1748-2021B in NGC
6440 [15]. Besides the maximum mass limits, the mass-radius
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relation is also constrained by the recent observations. The
thermal radiation spectra in X rays and in optical-UV
from the isolated neutron star RX J1856.5-3754 (or RX
J1856 for short) determine the large radiation radius R∞ as
16.8 km [16]. The model fitting to the high-quality X-ray
spectrum of the quiescent LMXB X7 in the globular cluster 47
Tuc prefers a rather large radius of 14.5+1.8

−1.6 km for a 1.4M�
compact star [17]. In another LMXB, EXO 0748-676, a pair
of resonance scattering lines consistent with Fe XXV and
XXVI gives a redshift z of about 0.345, which constrains the
mass to M � (2.10 ± 0.28)M� and the radius to R � 13.8 ±
1.8 km for the same object [18,19]. In addition, the highest
QPO frequency of 1330 Hz ever observed in 4U 0614 +
09 implies a mass M <∼ 1.8M� and a radius R <∼ 15 km in
this object [20]. Furthermore, modern observational soft X-ray
data of cooling neutron stars associated with popular synthesis
model analyses reveal that an acceptable EoS does not allow
the direct Urca process [21] to occur in neutron stars with
masses below 1.5M� [22–24]. All of these indicate the strict
constraints on the EoS of strongly interacting matter at high
densities.

For the description of nuclear matter and finite nuclei, the
relativistic many-body theory has achieved great success dur-
ing the past years. One of the most successful representatives
is the relativistic Hartree approach with the no-sea approxima-
tion, namely the relativistic mean-field (RMF) theory [25–27].
With a limited number of free parameters including the meson
masses and meson-nucleon coupling constants, the appropriate
quantitative descriptions are obtained by RMF for both stable
nuclei and exotic ones with large neutron excess [28–41].

After the first theoretical calculations of the neutron star
properties [42,43], plenty of theoretical predictions were
presented using both nonrelativistic and relativistic approaches
in the literature. In the early development of RMF, it was
applied to evaluate the total mass and radius of neutron
stars [44]. In its further development, nuclear medium effects
were taken into account by introducing the explicit or im-
plicit density dependence into the meson-nucleon couplings
(i.e., the density-dependent meson-nucleon couplings [45–47]
and the nonlinear self-couplings of the meson fields [39,48,49],
respectively). In Refs. [48,50,51], the effects of the nonlinear
self-coupling of σ, ω, and ρ mesons were studied in describing
nuclear matter and neutron stars. On the other side, the
influence on mean-field potentials, saturation properties of
nuclear matter, the EoS, and the maximum mass and radius
of neutron stars was systematically investigated with explicit
density dependence in the meson-nucleon couplings [52,53].
In addition, the consequences on compact star properties
were studied with the inclusion of the degree of freedom
of hyperons [54–57]. With more accurate experimental data
of the neutron radius of 208Pb, the correlation between the
neutron skin thickness in finite nuclei and the symmetry
energy of nuclear matter was discussed [58–60]. In further
investigation in Ref. [61] it was proposed that neutron stars
with larger neutron star radii had thicker neutron skins,
which implies constraints on the EoS and on the cooling
mechanism of neutron stars. Besides the RMF approach,
the Dirac-Brueckner-Hartree-Fock (DBHF) and Brueckner-
Hartree-Fock (BHF) with three-body force approaches were

also applied to study neutron star properties with realistic
nucleon-nucleon interactions [62–66].

In the RMF approach, however, the Fock terms are
neglected for simplicity. From the recent development of the
relativistic Hartree-Fock theory, that is, the density-dependent
relativistic Hartree-Fock (DDRHF) theory [67], it is found that
the Fock terms are of special importance in determining the
nuclear structure properties. Within DDRHF, quantitatively
comparable precision with RMF is obtained for the structure
properties of nuclear matter and finite nuclei [67,68]. Partic-
ularly, the new constituents introduced with the Fock terms
(i.e., the ρ-tensor correlations and pion exchange potential)
have brought significant improvement to the descriptions of
the nuclear shell structures [68] and their evolution [69].
Furthermore, the excitation properties and the non-energy-
weighted sum rules of the Gamow-Teller resonance and the
spin-dipole resonance in doubly magic nuclei have been well
reproduced by the random-phase approximation (RPA) based
on the DDRHF approach fully self-consistently [70]. Since
nuclear structure properties around the saturation density
are evidently affected by the Fock terms, one might expect
remarkable effects from the Fock terms on nuclear matter
properties in the high-density region. Especially with the
inclusion of the new ingredients in DDRHF, remarkable
adjustment occurs on the coupling strength of the dominant
mean fields (gσ and gω), which may bring significant effects
when exploring the high-density region.

In this paper, the properties of the static and β-equilibrium
neutron stars without hyperons are studied within the DDRHF
theory. As compared to the calculations of the RMF theory,
the applicable ranges of density and isospin asymmetry are
tested for DDRHF as well as for consistency with recent
observational constraints of compact stars. Section II briefly
introduces the formulism of DDRHF for nuclear matter
and neutron stars. In Sec. III, the calculated results and
discussions are given, including the properties of symmetric
and asymmetric nuclear matter in comparison with RMF in
Sec. III A, in which the effects of Fock terms are studied in
detail, and the investigations of neutron stars in comparison
with recent observational data in Sec. III B. Finally a summary
is given in Sec. IV.

II. GENERAL FORMULISM OF DENSITY-DEPENDENT
RELATIVISTIC HARTREE-FOCK THEORY

IN NUCLEAR MATTER

The relativistic Hartree-Fock (RHF) theory with density-
dependent meson-nucleon couplings (i.e., the DDRHF
theory) was first introduced in Ref. [67], and the applications
and corresponding effective interactions can be found in
Refs. [67–69,71]. In the following we just briefly recall the
general formulism of DDRHF in nuclear matter and the
application in neutron stars. For more details of the RHF theory
we refer the reader to Refs. [67,68,72].

As the theoretical starting point, the Lagrangian density of
DDRHF is constructed on the one-boson exchange diagram
of the NN interaction, which contains the degrees of freedom
associated with the nucleon (ψ), two isoscalar mesons (σ and
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ω), two isovector mesons (π and ρ), and the photon (A).
Following the standard procedure in Ref. [72], one can derive
the Hamiltonian in nucleon space as

H =
∫

d3xψ̄(−iγ · ∇ + M)ψ

+1

2

∫
d3xd4y

∑
φ

ψ̄(x)ψ̄(y)�φ(1, 2)Dφ(1, 2)ψ(y)ψ(x),

(1)

where φ = σ, ω, ρ, π , and A, and Dφ denotes the propagators
of mesons and photons. The interacting vertex �φ in the
Hamiltonian (1) is

�σ (1, 2) ≡ −gσ (1)gσ (2), (2a)

�ω(1, 2) ≡ +gω(1)γµ(1)gω(2)γ µ(2), (2b)

�ρ(1, 2) ≡ +gρ(1)γµ(1)�τ (1) · gρ(2)γ µ(2)�τ (2), (2c)

�π (1, 2) ≡ − 1

m2
π

[fπ �τγ5γ · ∇]1 · [fπ �τγ5γ · ∇]2, (2d)

�A(1, 2) ≡ +e2

4
[γµ(1 − τ3)]1[γ µ(1 − τ3)]2. (2e)

In the current work, the ρ-tensor correlations are not enclosed.
In these expressions and in the following context, the isovec-
tors are denoted by arrows and the space vectors are in bold
type.

In general, the time component of the four-momentum
carried by mesons is neglected on the level of the mean-field
approximation. This neglect has no consequence on the direct
(Hartree) terms, but for the exchange (Fock) terms it amounts
to neglecting retardation effects. The meson propagators are
therefore of the Yukawa form, for example, in the momentum
representation,

Dφ(1, 2) = 1

m2
φ + q2

, (3)

where the exchanging momentum is q = p2 − p1 and φ =
σ, ω, ρ, and π .

For the description of nuclear matter, the coulomb field
thus could be neglected, and the momentum representation is
generally adopted in the Hamiltonian. Because of time-reversal
symmetry and rotational invariance, the self-energy � can be
expressed as

�(p) = �S(p) + γ0�0(p) + γ · p̂�V (p), (4)

where p̂ is the unit vector along p, and the scalar component
�S , time component �0, and space component �V of the
vector potential are functions of the four-momentum p =
[E(p), p] of the nucleon. With the general form of the
self-energy, the Dirac equation in nuclear matter can be written
as (

γ · p∗ + M∗) u(p, s, τ ) = γ0E
∗u(p, s, τ ), (5)

with the starred quantities

p∗ = p + p̂�V (p), (6a)

M∗ = M + �S(p), (6b)

E∗ = E(p) − �0(p), (6c)

which obey the relativistic mass-energy relation E∗2 = p∗2 +
M∗2. With this relationship, one can introduce the hatted
quantities as

P̂ ≡ p∗

E∗ , M̂ ≡ M∗

E∗ . (7)

With the momentum representation, the Dirac equation (5) can
be formally solved and the Dirac spinors with positive energy
are

u(p, s, τ ) =
[
E∗ + M∗

2E∗

]1/2

 1

σ · p∗

E∗ + M∗


 χsχτ , (8)

where χs and χτ , respectively, denote the spin and isospin wave
functions. The solution of the Dirac Eq. (5) is normalized as

u†(p, s, τ )u(p, s, τ ) = 1. (9)

The stationary solutions of the Dirac equation (5) consist of
the positive and negative energy ones, and one can expand the
nucleon field operator ψ in terms of Dirac spinors. Within the
mean-field approximation, the contributions from the negative-
energy states are neglected (i.e., the no-sea approximation).
The nucleon field operator ψ is therefore expanded on the
positive-energy set as

ψ(x) = ∑
p,s,τ

u(p, s, τ )e−ipxcp,s,τ , (10a)

ψ†(x) = ∑
p,s,τ

u†(p, s, τ )eipxc
†
p,s,τ , (10b)

where cp,s,τ and c
†
p,s,τ are the annihilation and creation

operators. With the no-sea approximation, the trial Hartree-
Fock ground state can be constructed as

|0〉 =
∏
p,s,τ

c†p,s,τ |0〉 , (11)

where |0〉 is the vacuum state. The energy functional (i.e., the
energy density in nuclear matter) is then obtained by taking
the expectation of the Hamiltonian with respect to the ground
state|0 in a given volume �,

ε = 1

�
〈0|H |0〉 ≡ 〈T 〉 +

∑
φ

〈
Vφ

〉
= εk +

∑
φ

(
εD
φ + εE

φ

)
, (12)

where φ = σ, ω, ρ, π and

εk =
∑
p,s,τ

ū(p, s, τ )(γ · p + M)u(p, s, τ ), (13a)

εD
φ = 1

2

∑
p1,s1,τ1

∑
p2,s2,τ2

ū(p1, s1, τ1)ū(p2, s2, τ2)�φ(1, 2)

× 1

m2
φ

u(p2, s2, τ2)u(p1, s1, τ1), (13b)

εE
φ = −1

2

∑
p1,s1,τ1

∑
p2,s2,τ2

ū(p1, s1, τ1)ū(p2, s2, τ2)�φ(1, 2)

× 1

m2
φ + q2

u(p1, s1, τ1)u(p2, s2, τ2). (13c)
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In the energy functional, εk denotes the kinetic energy
density, and εD

φ and εE
φ , respectively, correspond to the direct

(Hartree) and exchange (Fock) terms of the potential energy
density. With the Dirac spinors in Eq. (8), one can obtain the
contributions of the energy density from each channel. The
kinetic energy density εk and the direct terms of the potential
energy density εD

φ can be written as

εk =
∑
i=n,p

1

π2

∫ kF,i

0
p2dp(pP̂ + MM̂), (14a)

εD
σ = −1

2

g2
σ

m2
σ

ρ2
s , (14b)

εD
ω = +1

2

g2
ω

m2
ω

ρ2
b , (14c)

εD
ρ = +1

2

g2
ρ

m2
ρ

ρ2
b3, (14d)

where the scalar density ρs , baryonic density ρb, and the third
component ρb3 are

ρs =
∑
i=n,p

1

π2

∫ kF,i

0
p2dpM̂(p), (15a)

ρb =
∑
i=n,p

k3
F,i

3π2
, (15b)

ρb3 = k3
F,n

3π2
− k3

F,p

3π2
, (15c)

with the Fermi momentum kF,i (i = n, p).
Compared to the simple form of direct terms of the potential

energy density, the exchange terms are much more compli-
cated. In the isoscalar channels (φ = σ, ω), the expressions
read as

εE
φ = 1

2

1

(2π )4

∑
τ,τ ′

δττ ′

∫
pp′dpdp′[Aφ(p, p′)

+ M̂(p)M̂(p′)Bφ(p, p′) + P̂ (p)P̂ (p′)Cφ(p, p′)]. (16)

For the isovector channels (φ = ρ, π ), one just needs to
replace the isospin factor δττ ′ by (2 − δττ ′) in this expression.
The details of the terms Aφ,Bφ , and Cφ in Eq. (16) are shown
in Table I, where the functions �φ(p, p′) and φ(p, p′) are

defined as∫
d�d�′ 1

m2
φ + q2

= 4π2

pp′ ln
m2

φ + (p + p′)2

m2
φ + (p − p′)2

≡ 4π2

pp′ �φ(p, p′), (17a)

∫
d�d�′ p̂ · p̂′

m2
φ + q2

= 4π2

pp′

{
p2 + p′2 + m2

φ

2pp′ �φ(p, p′) − 2

}

≡ 2
4π2

pp′ φ(p, p′). (17b)

From the potential energy densities in Eqs. (13b) and (13c),
one can perform the following variation:

�(p)u(p, s, τ ) = δ

δū(p, s, τ )

∑
σ,ω,ρ,π

[
εD
φ + εE

φ

]
(18)

and obtain the self-energy �(p), which includes the direct
terms

�D
S = − g2

σ

m2
σ

ρs, (19a)

�D
0 = + g2

ω

m2
ω

ρb + g2
ρ

m2
ρ

ρb3 (19b)

and the exchange terms

�E
τ,S(p) = 1

(4π )2p

∫
M̂(p′)p′dp′ ∑

τ ′
{δττ ′[Bσ + Bω](p,p′)

+ (2 − δττ ′)[Bρ + Bπ ](p,p′)}, (20a)

�E
τ,0(p) = 1

(4π )2p

∫
p′dp′ ∑

τ ′
{δττ ′[Aσ + Aω](p,p′)

+ (2 − δττ ′)[Aρ + Aπ ](p,p′)}, (20b)

�E
τ,V (p) = 1

(4π )2p

∫
P̂ (p′)p′dp′ ∑

τ ′
{δττ ′[Cσ + Cω](p,p′)

+ (2 − δττ ′)[Cρ + Cπ ](p,p′)}. (20c)

In DDRHF, the explicit density dependence is introduced
into the meson-nucleon couplings (i.e., the coupling constants
gσ , gω, gρ , and fπ are functions of the baryonic density ρb).
In the isoscalar meson-nucleon coupling channels, one has the
following form:

gφ (ρb) = gφ (ρ0) fφ (x) , (21)

TABLE I. The terms Aφ,Bφ , and Cφ in Eq. (16).

φ Aφ(p, p′) Bφ(p, p′) Cφ(p, p′)

σ g2
σ �σ (p, p′) g2

σ �σ (p, p′) −2g2
σ σ (p, p′)

ω 2g2
ω�ω(p, p′) −4g2

ω�ω(p, p′) −4g2
ωω(p, p′)

ρ 2g2
ρ�ρ(p, p′) −4g2

ρ�ρ(p, p′) −4g2
ρρ(p, p′)

π −f 2
π �π (p, p′) −f 2

π �π (p, p′) 2 f 2
π

m2
π

[(p2 + p′2)π (p, p′) − pp′�π (p, p′)]
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where x = ρb/ρ0 with ρ0 the saturation density of nuclear
matter, and the function fφ is

fφ(x) = aφ

1 + bφ(x + dφ)2

1 + cφ(x + dφ)2
. (22)

In addition, five constraints, f ′′
σ (1) = f ′′

ω (1), fφ(1) = 1, and
f ′′

φ (0) = 0 (φ = σ, ω), are introduced to reduce the number of
free parameters. For the isovector channels, the exponential
density dependence is adopted for gρ and fπ :

gρ (ρb) = gρ (0) e−aρx, (23)

fπ (ρb) = fπ (0) e−aπ x . (24)

Because of the density dependence in meson-nucleon
couplings, the additional contribution (i.e., the rearrangement
term �R) appears in the self-energy �. In nuclear matter, it
can be written as

�R =
∑

φ=σ,ω,ρ,π

∂gφ

∂ρb

∑
τ

1

π2

∫ [
M̂(p)�φ

τ,S(p) + �
φ

τ,0(p)

+ P̂ (p)�φ

τ,V (p)
]
p2dp. (25)

From Eqs. (19), (20), and (25), the scalar component �S ,
time component �0, and space component �V of the vector
potential in Eq. (4) can be obtained as

�S(p) = �D
S + �E

S (p), (26a)

�0(p) = �D
0 + �E

0 (p) + �R, (26b)

�V (p) = �E
V (p), (26c)

from which the starred quantities in Eq. (6) and the hatted
quantities in Eq. (7) can be obtained. Therefore, for nuclear
matter with given baryonic density ρb and neutron-proton
ratio N/Z, one can proceed by a self-consistent iteration to
investigate their properties: With the trial self-energies, one
can determine the starred quantities and hatted quantities and
calculate the scalar density, and then get the new self-energies
for the next iteration until final convergence is obtained.

In this work, a neutron star is described as the β-stable
nuclear matter system, which consists of not only neutrons and
protons but also leptons λ (mainly e− and µ−). The equations
of motion for the leptons are the free Dirac equations and
their densities can be expressed in terms of their corresponding
Fermi momenta, ρλ = k3

F,λ/(3π2) (λ = e−, µ−). The chemical
potentials of nucleons and leptons satisfy the equilibrium
conditions

µp = µn − µe, µµ = µe, (27)

where the chemical potentials µn,µp, µµ, and µe are deter-
mined by the relativistic energy-momentum relation at the
momentum p = kF ,

µi = �0(kF,i) + E∗(kF,i), (28a)

µλ =
√

k2
F,λ + m2

λ, (28b)

where i = n, p and λ = e−, µ−. The lepton masses are,
respectively, me = 0.511 MeV and mµ = 105.658 MeV. In
addition, baryon density conservation and charge neutrality

are imposed as

ρb = ρn + ρp, ρp = ρµ + ρe. (29)

With these constraints, the energy density of neutron stars
is then obtained as

εns =
∑

i=n,p,e,µ

εk,i +
∑

φ=σ,ω,ρ,π

(
εD
φ + εE

φ

)
. (30)

Here the leptons are treated as a free Fermi gas by assuming
that there are no interactions between leptons and nucleons or
mesons and the kinetic energies of leptons can be expressed as

εk,λ = 1

π2

∫ kF,λ

0
p2dp

√
p2 + m2

λ. (31)

With the thermodynamic relation, the pressure of the neutron
star system can be obtained as

P (ρb) = ρ2
b

d

dρb

εns

ρb

=
∑

i=n,p,e,µ

ρiµi − εns. (32)

In the low-density region (ρb < 0.08 fm−3), instead of DDRHF
calculations, the BPS [73] and BBP [74] models are chosen to
provide the proper EoS.

The structure equations of a static, spherically symmetric,
and relativistic star are the Tolman-Oppenheimer-Volkov
(TOV) equations [42,43]. By taking c = G = 1, the TOV
equations become

dP

dr
= − [P (r) + ε(r)][M(r) + 4πr3P (r)]

r[r − 2M(r)]
, (33a)

dM

dr
= 4πr2ε(r), (33b)

where P (r) is the pressure of the star at radius r , and M(r) is the
total star mass inside a sphere of radius r . Taking the equation
of state of stellar matter as the input, one could proceed with the
solution of TOV equations. The point R, at which the pressure
vanishes [i.e., P (R) = 0] defines the radius of the star, and
the corresponding M(R) is the gravitational mass. For a given
EoS, the TOV equation has the unique solution that depends
on a single parameter characterizing the conditions of matter
at the center, such as the central density ρ(0) or the central
pressure P (0).

III. RESULTS AND DISCUSSION

In this paper, the EoS and the neutron star properties
are studied in DDRHF with the effective interactions PKO1,
PKO2, and PKO3 [67,69]. As shown in Table II, the coupling
constant gρ(0) is fixed to the value in the free space in PKO1,
whereas it is free to be adjusted in PKO2 and PKO3, and
π -coupling is not included in PKO2. For comparison, the
results calculated by RMF are also discussed. The effective
interactions used in RMF calculations include the nonlinear
self-coupling ones GL-97 [44], NL1 [75], NL3 [37], NLSH
[76], TM1 [49], and PK1 [39] and the density-dependent ones
TW99 [38], DD-ME1 [40], DD-ME2 [41], and PKDD [39].
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TABLE II. The effective interactions PKO1, PKO2, and PKO3 of DDRHF [67], where the masses are M = 938.9 MeV, mω = 783.0 MeV,
mρ = 769.0 MeV, and mπ = 138.0 MeV.

mσ gσ gω gρ(0) fπ (0) aρ aπ ρ0

PKO1 525.769084 8.833239 10.729933 2.629000 1.000000 0.076760 1.231976 0.151989
PKO2 534.461766 8.920597 10.550553 4.068299 – 0.631605 – 0.151021
PKO3 525.667686 8.895635 10.802690 3.832480 1.000000 0.635336 0.934122 0.153006

aσ bσ cσ dσ aω bω cω dω

PKO1 1.384494 1.513190 2.296615 0.380974 1.403347 2.008719 3.046686 0.330770
PKO2 1.375772 2.064391 3.052417 0.330459 1.451420 3.574373 5.478373 0.246668
PKO3 1.244635 1.566659 2.074581 0.400843 1.245714 1.645754 2.177077 0.391293

A. Properties of nuclear matter

1. Bulk properties

Table III shows the bulk quantities of nuclear matter at
saturation point (i.e., the saturation density ρ0, the binding
energy per particle, EB/A, the incompressibility K , the
symmetry energy J , and the scalar mass M∗

S/M). The results
calculated by RMF with both the nonlinear self-coupling
effective interactions and the density-dependent ones, which
have been studied systematically in Ref. [53], are included
for comparison. The saturation density and the binding energy
per particle given by DDRHF with the PKO series are around
0.152 fm−3 and −16.0 MeV, respectively, close to the values
provided by RMF. The incompressibility K calculated by
DDRHF with PKO1, PKO2, and PKO3 range from 249
to 262 MeV, close to the values given by RMF with a
density-dependent effective interaction. In contrast, relatively
large values of K (270–360 MeV) are obtained by RMF
with the nonlinear self-coupling of mesons, except GL-97 and
NL1. For the symmetry energy J , the nonlinear version of
RMF also gives relatively large values (36–44 MeV) except
for GL-97, whereas the density-dependent version of RMF
(except for PKDD) provides comparative values (32–34 MeV)

TABLE III. The saturation density ρ0 (fm−3), binding energy
per particle, EB/A (MeV), incompressibility K (MeV), asymmetry
energy coefficient J (MeV), and the scalar mass M∗

S /M of nuclear
matter at the saturation point.

ρ0 EB/A K J M∗
S /M

PKO1 0.1520 −15.996 250.239 34.371 0.5900
PKO2 0.1510 −16.027 249.597 32.492 0.6025
PKO3 0.1530 −16.041 262.469 32.987 0.5862

GL-97 0.1531 −16.316 240.050 32.500 0.7802
NL1 0.1518 −16.426 211.153 43.467 0.5728
NL3 0.1483 −16.249 271.730 37.416 0.5950
NLSH 0.1459 −16.328 354.924 36.100 0.5973
TM1 0.1452 −16.263 281.162 36.892 0.6344
PK1 0.1482 −16.268 282.694 37.642 0.6055

TW99 0.1530 −16.247 240.276 32.767 0.5549
DD-ME1 0.1520 −16.201 244.719 33.065 0.5780
DD-ME2 0.1518 −16.105 250.296 32.271 0.5722
PKDD 0.1496 −16.268 262.192 36.790 0.5712

to DDRHF with PKO1, PKO2, and PKO3. For the scalar
mass M∗

S , GL-97 gives the largest value and TW99 gives
the smallest. The values given by DDRHF with the PKO
series are around 0.60, close to those by RMF with the
nonlinear self-couplings of mesons except for GL-97, and
systematically smaller values are obtained by RMF with the
density-dependent meson-nucleon couplings.

2. Density dependence of the coupling constants

In DDRHF, medium effects are evaluated by the density
dependence in the meson-nucleon couplings. To understand
the EoS, it is worthwhile to have a look at the density depen-
dence of the coupling constants. Figure 1 shows the coupling
constants gσ , gω, gρ , and fπ as functions of baryonic density
ρb, where the results of the DDRHF effective interactions
PKO1, PKO2, and PKO3 are given as compared to the RMF
ones TW99, DD-ME2, and PKDD. As seen from Fig. 1, all the
effective interactions show strong density dependence in the
low-density region (ρb < 0.2 fm−3) for both isoscalar (σ and
ω) and isovector (ρ and π ) meson-nucleon couplings. When
density becomes higher, gσ and gω in the left panels become
stable, whereas owing to the exponential density dependence,
the isovector ones gρ and fπ tend to vanish (except gρ in PKDD
and PKO1), as shown in the right panels. From this aspect, one
can understand that the isoscalar mesons provide the dominant
contributions in the high-density region. Compared to the
RMF effective interactions, PKO1, PKO2, and PKO3 have
smaller gσ and gω. This is mainly due to the effects of Fock
terms, which lead to the recombination of the ingredients in
the nuclear interactions. With the inclusion of Fock terms,
the nuclear attractions are shared by the Hartree terms of
σ -coupling and the Fock terms of ω-, ρ-, and π -couplings,
and the repulsions are contributed by the Hartree terms of
ω-coupling and the Fock terms of σ -coupling, whereas in
RMF, the attraction and repulsion are provided only by the
Hartree terms of the σ - and ω-couplings, respectively.

It is not enough to adjust the isospin properties only
within the nuclear saturation region. It is expected that the
investigations on the EoS at higher densities and neutron
star properties could provide the additional constraint. For
the isovector coupling constants in the right panels of Fig. 1,
PKO1 and PKDD give slightly weak density dependence in
gρ because of the fairly small density-dependent parameter
aρ . In analogy to gσ and gω, the RMF effective interactions
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FIG. 1. (Color online) The coupling con-
stants gσ , gω, gρ , and fπ as functions of the
baryonic density ρb (fm−3) for the DDRHF
effective interactions PKO1, PKO2, and PKO3
and the RMF ones PKDD, TW99, and DD-ME2.
The shadowed area represents the empirical
saturation region ρb = 0.166 ± 0.018 fm−3.

give larger values of gρ . This is also due to the exchange
contributions. In DDRHF, significant contributions to the
isospin part of nuclear interaction are found in exchange terms
of isovector mesons as well as isoscalar ones. It is different
from the situation in RMF in which the isospin properties
are only described by the direct part of ρ-coupling. For the
π -meson, the contribution in neutron stars is negligible since
fπ tends to vanish at high densities.

3. Equations of state

The equations of state calculated by DDRHF with PKO1,
PKO2, and PKO3 are shown in Figs. 2 and 3, respectively,
for symmetric nuclear matter and pure neutron matter. The
results calculated by RMF with TW99, DD-ME2, and PKDD
are also shown for comparison. (See Ref. [53] for the density
dependence of the EoS on more RMF effective interactions.)
As can be seen from these two figures, identical behaviors

FIG. 2. (Color online) The binding energy per particle, EB/A, as
a function of the baryonic density ρb for symmetric nuclear matter.
The results are calculated by DDRHF with PKO1, PKO2, and PKO3,
in comparison with those by RMF with TW99, DD-ME2, and PKDD.

of the EoS are provided by all the effective interactions
in the low-density region (ρb < ρ0) but in the high-density
region pronounced deviations exist among different effective
interactions.

For the symmetric nuclear matter in Fig. 2, DDRHF with
PKO1, PKO2, and PKO3 provides similar equations of states to
RMF with PKDD and DD-ME2, whereas a much softer EoS
is obtained by RMF with TW99 when the density becomes
high. For the pure neutron matter in Fig. 3, the curves can
be classified into three groups according to the behaviors of
the EoS in the high-density region. Among all the effective
interactions, the DDRHF ones give the hardest equations of
state and in the RMF TW99 gives the softest one, whereas
DD-ME2 and PKDD provide similar equations of states,
which lie between the hardest and softest. Since the DDRHF
parametrizations were performed by fitting the properties of
finite nuclei and nuclear matter around the saturation point
[67], which corresponds to the low-density region, it becomes
necessary to test the extrapolation of the effective interactions
PKO1, PKO2, and PKO3 to high densities.

FIG. 3. (Color online) Similar to Fig. 2 but for pure neutron matter.
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FIG. 4. (Color online) The nuclear symmetry energy ES (MeV) as
a function of the baryon density ρb (fm−3). The results are calculated
by DDRHF with PKO1, PKO2, and PKO3, in comparison to those
by RMF with TW99, DD-ME2, and PKDD.

4. Symmetry energy

The EoS property of isospin asymmetric nuclear matter
is still somewhat ambiguous. Different theoretical models
predict quite different behaviors of the EoS for pure neutron
matter. In most cases, this is due to the effective interactions
obtained by fitting the properties of doubly magic nuclei, which
have an isospin close to that of symmetric nuclear matter.
From this point of view, it becomes necessary to introduce
the constraints, either from isospin asymmetric heavy-ion
collisions experiments or from the data of nuclei with extreme
isospin, into the fitting procedures of the effective interactions.

The symmetry energy is an important quantity for illustrat-
ing the property of asymmetric nuclear matter. In general, the
energy per particle of asymmetric nuclear matter, E(ρb, β),
can be expanded in a Taylor series with respect to β,

E(ρb, β) = E0(ρb) + β2ES(ρb) + · · · , (34)

where β = 1 − 2ρp/ρb is the asymmetry parameter depending
on the proton fraction. The function E0(ρb) is the binding

energy per particle in symmetric nuclear matter, and the
symmetry energy ES(ρb) [J = ES(ρ0)] is denoted as

ES(ρb) = 1

2

∂2E(ρb, β)

∂β2

∣∣∣∣
β=0

. (35)

The empirical parabolic law in Eq. (34) is confirmed to be
reasonable throughout the range of the asymmetry parameter
values, but at high density deviation from such a behavior is
found [77].

Figure 4 shows the symmetry energy as a function of the
baryon density ρb. The results are calculated by DDRHF
with PKO1, PKO2, and PKO3, in comparison with those by
RMF with TW99, DD-ME2, and PKDD. As shown in Fig. 4,
both DDRHF and RMF effective interactions exhibit identical
symmetry energy behaviors at low densities (ρ < ρ0), whereas
sizable enhancements in the high-density region are obtained
by DDRHF with PKO1, PKO2, and PKO3 as compared to the
RMF results. Among the RMF calculations, PKDD shows
harder behavior than DD-ME2 and TW99, both of which
provide identical symmetry energy in the whole density region.

From the energy functional in nuclear matter in Eq. (12),
one can obtain the contributions from different channels to the
symmetry energy ES as

ES = ES,k +
∑

φ

(
ED

S,φ + EE
S,φ

)
, (36)

where φ = σ, ω, ρ, and π . In fact, the direct terms of ω-meson
coupling have no contribution to the symmetry energy because
of the nature of isoscalar-vector coupling. It is also expected
that the one-pion exchange has minor effects since nuclear
matter is a spin-saturated system. In Fig. 5, the contributions
from different channels to the symmetry energy are shown
as functions of the baryon density ρb. In the left panel are
presented the contributions from the kinetic part and isoscalar
channels, and only the results calculated by DDRHF with
PKO1 are shown in comparison with those by RMF with
PKDD and DD-ME2. The contributions from the ρ-meson
coupling are shown in the right panel, including the results
calculated by DDRHF with PKO1, PKO2, and PKO3 and
RMF with PKDD, DD-ME2, and TW99.

FIG. 5. (Color online) Contributions from different channels to the symmetry energy as a function of the baryon density ρb. The left panel
gives the contributions from the kinetic energy and isoscalar channels; the ones from ρ mesons are shown in the right panel. See text for details.
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Within RMF, one can find that the kinetic part and the direct
terms of σ coupling (i.e., ES,k and ED

S,σ ) provide the dominant
contributions to the symmetry energy. As shown in the left
panel of Fig. 5, PKDD and DD-ME2 give identical values
of ES,k + ED

S,σ , and the deviation between them appearing in
Fig. 4 is mainly due to their contributions from the ρ-coupling,
as seen from the right panel of Fig. 5. In the left panel of
Fig. 5, the values of ES,k + ED

S,σ given by the DDRHF calcu-
lations are found to be smaller than those of RMF with PKDD
and DD-ME2. It is also seen that the Fock terms of σ - and
ω-couplings exhibit significant contributions to the symmetry
energy, which well fits with the stronger density dependence
predicted by DDRHF than by RMF in the high-density region
(see Fig. 4). As seen from the left panel of Fig. 5, the values
of EE

S,σ increase rapidly in the low-density region and tend
to be stable about 20–25 MeV at high density. However, the
exchange terms of ω-coupling provide negative contributions
to the symmetry energy at low density and reach a minimum of
about −11 MeV at ρb = 0.1 fm−3. After that the values of EE

S,ω

increase and become comparable to the values of ES,k + ED
S,σ

at several times the saturation density.
In the right panel of Fig. 5, the contributions of ρ-coupling

(i.e., ES,ρ = ED
S,ρ + EE

S,ρ) are found to be important for the
symmetry energy in the low-density region. When density
gets high, the values of ES,ρ given by all the effective inter-
actions except PKO1 and PKDD tend to zero owing to their
strong exponential density dependence in ρ-nucleon coupling.
Because of its much smaller value of aρ , PKO1 presents larger
contributions than PKO2 and PKO3 and contributes a value
of about 10–15 MeV in the high-density region. For the same
reason, PKDD also provides larger values of ES,ρ than the
other two RMF effective interactions, reaching a maximum
of about 26 MeV at ρb 
 0.41 fm−3, then declining slowly.
Comparing the values of ES,ρ given by PKO2 and PKO3 to
those by DD-ME2 and TW99, one sees that the contribution
of ρ-coupling ES,ρ is depressed systematically in DDRHF.
Such depressions also exist between the results of PKO1 and
PKDD, which are of similar density dependence in ρ-nucleon
coupling. This could be understood from the fact that smaller

values of gρ are obtained with the inclusion of Fock terms,
as seen in Fig. 1. In fact, not only the ρ meson but all the
mesons take part in the isospin properties and are in charge of
producing the symmetry energy via the Fock channel.

In conclusion, one finds that the Fock terms play an
important role in determining the density-dependent behavior
of the symmetry energy. It is then expected that the important
constraints on the symmetry energy and the EoS of asymmetric
nuclear matter could be obtained from the study of neutron
stars.

B. Properties of neutron stars

In this work, the static and β-equilibrium assumptions
are imposed for the description of neutron stars. As den-
sity increases, the high-momentum neutrons will β decay
into protons and electrons (i.e., n ↔ p + e− + ν̄e) until the
chemical potentials satisfy the equilibrium µp = µn − µe.
When the chemical potential of electron µe reaches the limit
of the muon mass, the lepton µ− will appear. The reaction
e− ↔ µ− + ν̄µ + νe implies equilibrium between the e− and
µ− chemical potentials (i.e., µe = µµ).

1. Density distribution

To keep the equilibrium among the particle chemical
potentials, protons, electrons, and muons will appear with
increasing density in neutron stars. Figure 6 shows the neutron,
proton, electron, and muon densities in neutron stars as
functions of the baryon density. The results are calculated
by DDRHF with PKO1, PKO2, and PKO3, in comparison
to those by RMF with TW99, DD-ME2, and PKDD. The
density distributions of various components in RMF with
both the nonlinear self-coupling effective interactions and the
density-dependent ones have been studied systematically in
Ref. [53]. As seen from Fig. 6, the thresholds of µ− occurrence
predicted by different effective interactions are very close to
each another, roughly around ρb = 0.12 fm−3. It is shown that

FIG. 6. (Color online) The neutron (upper
left panel), proton (upper right panel), electron
(lower left panel), and muon (lower right panel)
densities in neutron star matter as functions of
the baryon density ρb (fm−3). The results are
calculated by DDRHF with PKO1, PKO2, and
PKO3, in comparison to those by RMF with
TW99, DD-ME2, and PKDD.
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all the densities keep increasing monotonically with respect to
the baryonic density ρb. Similar to the situation in the EoS of
nuclear matter, different effective interactions present identical
trends at low densities (ρb < ρ0), but remarkable deviations
exist in the high-density region between the DDRHF and
RMF predictions. As seen from Fig. 6, the results given by
different effective interactions can be classified into three
groups: the DDRHF ones, PKDD, and the RMF ones DD-ME2
and TW99. For the proton, electron, and muon densities, the
strongest density dependence is exhibited by DDRHF with
PKO1, PKO2, and PKO3, whereas the softest behaviors are
provided by RMF with DD-ME2 and TW99. In contrast, the
softest behavior on neutron density is predicted by the DDRHF
effective interactions, whereas TW99 and DD-ME2 exhibit the
hardest. This kind of reversion can be well understood from
the relations in Eq. (29) among the densities.

It is known that the density fractions of each component
in neutron stars are rather sensitive to the symmetry energy,
as illustrated by associating Fig. 6 with Fig. 4. Owing to
the strong effects from the exchange terms of ω-coupling
in the high-density region (see Fig. 5), DDRHF with PKO1,
PKO2, and PKO3 shows stronger density dependence on the
symmetry energy and thus harder proton, electron, and muon
density distributions, as compared to the RMF calculations.
The deviations between different effective interactions within
one theoretical model (e.g., between PKDD and DD-ME2)
are mainly due to the ρ-coupling, as shown in the right panel
of Fig. 5, where the ρ-meson coupling of PKDD shows larger
contributions to the symmetry energy. In conclusion, the harder
the symmetry energy behavior at high densities is, the more
difficult it becomes for the system to become asymmetric and
the easier it is for neutrons to decay into protons and electrons,
which leads to smaller neutron abundance and larger proton,
electron, and muon abundances in neutron stars.

2. Proton fraction and direct Urca constraint

From the density distributions in Fig. 6, one can extract the
proton fraction x = ρp/(ρp + ρn) within the range of density
of neutron stars. Figure 7 shows the proton fraction x as a
function of baryonic density ρb, where the results calculated
by DDRHF with the PKO series are presented in comparison
to those by RMF with TW99, DD-ME2, and PKDD. Because
of the stiff behavior of the symmetry energy (see Fig. 4), a
stronger density dependence of the proton fraction x in neutron
star matter is obtained by DDRHF than RMF, as shown in
Fig. 7.

The cooling mechanism of neutron stars, which is sensitive
to the proton fraction, could bring significant information
on asymmetric nuclear equations of state. Direct Urca (DU)
processes n → p + e− + ν̄e and p + e− → n + νe lead the
star to cool rapidly by emitting thermal neutrinos. The
threshold of the proton fraction xDU for the DU process
occurring can be easily found as 11.1% � xDU � 14.8% from
momentum conservation and charge neutrality [21,24]. As
seen from Fig. 7, the critical density ρDU for the DU process
occurring depends on the EoS. Once the critical density ρDU is
reached in the center of a neutron star for a given EoS, the star

FIG. 7. (Color online) Proton fractions x = ρp/(ρp + ρn) in
neutron star matter for different DDRHF and DDRMF effective
interactions. The dotted line labeled with xDU is the threshold for
the direct Urca process to occur. Here xDU = 14.8% is taken by
assuming muons in the massless limit.

will be efficiently cooled via the DU process. It is found that
the values of xDU given by DDRHF calculations correspond
to fairly low critical densities whereas the results calculated
by RMF with TW99 and DD-ME2 do not support the DU
process occurring at all. The DU critical star masses MDU and
corresponding central densities ρDU(0) are marked in Fig. 9
by filled squares.

According to the analysis in Refs. [22–24], if the DU
process is taken as a possible mechanism for neutron star
cooling, an acceptable EoS would not allow it to occur in
neutron stars with masses below 1.5M�; otherwise it will be
in disagreement with modern observational soft X-ray data
in the temperature-age diagram. As a weaker constraint, the
limit MDU > 1.35M� could be applied. From the mass limit
MDU are then obtained the constraint over the EoS that the
density dependence of the symmetry energy should not be
too strong, nor probably too weak, either. Table IV gives the
critical neutron star mass MDU and central densities ρDU(0)
from the DDRHF and RMF calculations, which support the
occurrence of the DU cooling process in stars.

As seen from Table IV, rather small mass limits MDU

are obtained by RMF with the nonlinear self-coupling of
mesons whereas the DDRHF calculations with PKO2 and
PKO3 provide larger values of MDU, which are very close
to the aforementioned limit of 1.5M� and satisfy the weak
constraint that MDU > 1.35M�. For the calculation with
PKO1, the DU cooling process will occur at the fairly low mass
1.20M� and central density ρDU 
 0.28 fm−3, which can be
interpreted by the contributions of the ρ-meson coupling to
the symmetry energy. For ES,ρ in the right panel of Fig. 5,
the ρ-meson coupling in PKO1 still has remarkable effects
in the high-density region owing to the weak density depen-
dence of gρ (see Fig. 1). For the same reason, the RMF calcu-
lation with PKDD also supports the DU cooling process occur-
ring at a low mass limit of 1.26M�. In contrast, as seen in Fig. 7,
the occurrence of the DU cooling process is not supported at
all by the RMF calculations with TW99 and DD-ME2 as well
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TABLE IV. Critical neutron star masses MDU and central densities ρDU(0) for the occurrence of the DU cooling
process and the criterion of the DU constraint given by both DDRHF and RMF effective interactions. Fulfillment
(violation) of a constraint is indicated with + (−).

PKO1 PKO2 PKO3 GL-97 NL1 NL3 NLSH TM1 PK1 PKDD

MDU[M�] 1.20 1.45 1.43 1.10 0.75 1.01 1.20 0.96 0.94 1.26
ρDU(0) [fm−3] 0.28 0.33 0.31 0.33 0.20 0.23 0.24 0.24 0.23 0.33
MDU � 1.5M� − − − − − − − − − −
MDU � 1.35M� − + + − − − − − − −

as DD-ME1. It is expected that the occurrence of the DU
process could be introduced as a possible constraint in future
parametrizations of both DDRHF and RMF, for example, for
ρ-meson coupling [gρ(0) and aρ].

3. Pressure and maximum mass of neutron stars

Figure 8 shows the pressures of neutron star matter
calculated by DDRHF effective interactions as functions of the
baryonic density ρb. The RMF results with GL-97, NL3, TW99
in Ref. [53] and also PK1, DD-ME2, and PKDD have been
included for comparison. It is found that PKO1, PKO2, and
PKO3 provide identical behaviors over the density dependence
of the pressure; these are also close to the behaviors predicted
by RMF with PKDD and DD-ME2. Among all the DDRHF
and RMF calculations, NL3 provides the strongest density
dependence and the softest are presented by GL-97. The
behaviors given by PK1 and TW99 lie between the results
of DDRHF with the PKO series and RMF with GL-97.

The variation of the pressure with respect to density is
essential to understand the structure of neutron stars. A
stronger density dependence of the pressure at high densities
would lead to a larger value of the maximum mass for neutron
stars that can be sustained against collapse. In Fig. 9, the
neutron star masses calculated by DDRHF with PKO1, PKO2,
and PKO3 are shown as functions of the central density ρ(0).

FIG. 8. (Color online) The pressure of neutron star matter as a
function of the baryon density ρb (fm−3). The results are calculated
by DDRHF with PKO1, PKO2, and PKO3, in comparison to those
by RMF with GL-97, NL3, PK1, TW99, DD-ME2, and PKDD.

For comparison, also shown are the results calculated by RMF
with GL-97, NL3, PK1, TW99, DD-ME2, and PKDD, and
one could refer to Ref. [53] for more studies with a variety
of RMF effective interactions. From Fig. 9, it is found that
the maximum masses given by the DDRHF calculations lie
between 2.4M� and 2.5M� with the central densities around
0.80 fm−3, which are close to the prediction of RMF with
DD-ME2. Notice that these values are also compatible to
the observational constraint (M = 2.08 ± 0.19M�) from PSR
B1516 + 02B [14]. Table V shows the maximum mass limits
Mmax and the corresponding central densities ρmax(0) extracted
from Fig. 9. Consistent with the description of the pressure,
the nonlinear RMF effective interaction NL3 exhibits a rather
large value of the maximum mass Mmax = 2.78M� with small
central density ρmax(0) = 0.67 fm−3, whereas the smallest
Mmax and the largest ρmax(0) are obtained by RMF with GL-97
and TW99, which gives the softest behaviors of the pressure
(see Fig. 8). As seen from Table V, the values of Mmax given
by all the effective interactions are in appropriate agreement
with the constraint on the maximum mass from PSR B1516 +
02B.

FIG. 9. (Color online) Neutron star mass as a function of the
central density for different DDRHF and RMF effective interactions.
Filled stars denote the maximum mass configurations; filled squares
mark the critical mass MDU and central density values ρDU(0) where
the DU cooling process becomes possible. The light gray horizontal
bands around 2.08M� denote the 1σ confidence level for the mass
measurement of PSR B1516+02B [14]. The mass region of typical
neutron stars is between 1.0M� and 1.5M�.
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TABLE V. Maximum mass limits Mmax (M�), the corresponding central densities ρmax(0) (fm−3), and radii R(Mmax) (km) for neutron stars
calculated by DDRHF and RMF effective interactions. The radii (km) for 1.4M� neutron stars are shown as well.

PKO1 PKO2 PKO3 GL-97 NL1 NL3 NLSH TM1 PK1 TW99 DD-ME1 DD-ME2 PKDD

Mmax 2.45 2.45 2.49 2.02 2.81 2.78 2.80 2.18 2.32 2.08 2.45 2.49 2.33
ρmax(0) 0.80 0.81 0.78 1.09 0.66 0.67 0.65 0.85 0.80 1.10 0.84 0.82 0.89
R(Mmax) 12.4 12.3 12.5 10.9 13.4 13.3 13.5 12.4 12.7 10.7 11.9 12.1 11.8
R(1.4M�) 14.1 13.8 13.9 13.3 14.7 14.7 14.9 14.4 14.5 12.4 13.2 13.3 13.7

4. Mass-radius relation and observational constraint

Recent astronomic observations also provide constraints
on the mass-radius relation of neutron stars. In this paper,
four typical observations are adopted to test the theoretical
calculations:

(i) the large radiation radius R∞ = 16.8 km (R∞ =
R/

√
1 − 2GM/Rc2) from the isolated neutron star RX

J1856 [16],
(ii) the redshift z 
 0.345, the mass M � 2.10 ± 0.28M�,

and the radius R � 13.8 ± 1.8 km constraints in LMXB
EXO 0748-676 [18,19],

(iii) M <∼ 1.8M� and R <∼ 15km constraints from the high-
est frequency of QPOs (1330 Hz) ever observed in 4U
0614 + 09 [20], and

(iv) several neutron stars in LMXBs with gravitational
masses between 1.9M� and possibly 2.1M� from the
QPO data analysis in LMXB 4U 1636-536 [13].

Figure 10 shows the mass-radius relations of neutron
stars calculated by DDRHF with PKO1, PKO2, and PKO3
and RMF with GL-97, NL3, PK1, TW99, DD-ME2, and
PKDD. The results with more RMF effective interactions have
been investigated in Ref. [53]. For comparison, the selected
observational constraints are marked with different colors and
grids, as shown in Fig. 10. The causality limit that

√
∂p/∂ε � 1

results in R > 2.9 GM/c2 [78,79] and the corresponding
region in Fig. 10 is marked in black. Compared to all the
observational limits, it is found that better agreements are
obtained by the DDRHF effective interactions than the RMF
ones. Among the RMF results, GL-97 is excluded by the limits
from RX J1856, and TW99 is excluded by the limits from both
RX J1856 and EXO 0748-676, but NL3 could not fulfill the
constraint from 4U 0614 + 09. If the upper mass limit of
2.1M� is taken in 4U 1636-536, neither GL-97 and TW99
are satisfied. The detailed criteria of the M-R constraints

FIG. 10. (Color online) Mass-radius relations of neutron stars
provided by the DDRHF and RMF calculations and the corresponding
maximum masses ( marked by filled star symbols). For comparison
are also shown the four separate observational constraints from RX
J1856 (gray grided region), 4U 0614 + 09 (cyan grided area), 4U
1636-536 (yellow grided area), and EXO 0748-676 (error bar for 1σ

error). The black region is excluded by causality that R > 2.9 GM/c2

[78,79]. See the text for details.

are presented in Table VI. It is shown that the predictions
given by DDRHF with the PKO series and RMF with PK1,
TM1, DD-ME1, DD-ME2, and PKDD fulfill all the M-R
constraints.

In Refs. [58,59], the radius of neutron stars with a mass
of 1.4M� was found to be correlated with the neutron skin
thickness of 208Pb as well as the symmetry energy. If the
oberservation can limit the radius of neutron stars to a narrow
range, a strong constraint can be imposed on the symmetry
energy. However, if the neutron skin thickness of 208Pb or
the symmetry energy could be precisely determined from
terrestrial experiments, this would be helpful for understanding

TABLE VI. The criteria of the M-R constraints: (1) the isolated neutron star RX J1856, (2) EXO 0748-676, (3) the low-mass X-ray binary
4U 0614 + 09, (4-u) 4U 1636-536 with its upper mass limits, and (4-l) 4U 1636-536 with its lower mass limits. Fulfillment (violation) of a
constraint is indicated with + (−) and the marginal cover is marked with δ. See the text for details.

PKO1 PKO2 PKO3 GL-97 NL1 NL3 NLSH TM1 PK1 TW99 DD-ME1 DD-ME2 PKDD

1 + + + − + + + + + − + + +
2 + + + + + + + + + � + + +
3 + + + + � � − + + + + + +
4-u + + + − + + + + + � + + +
4-l + + + + + + + + + + + + +
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neutron star structure and rule out some equations of state
for neutron star matter. As seen in Fig. 10 and Table V,
although several equations of state provide similar maximum
masses, they still show some discrepancy for the radius of
neutron stars with a mass of 1.4M�. In Table V, the DDRHF
interactions predict this radius in a range from 13.8 to 14.1 km,
whereas the nonlinear RMF interaction NLSH gives the largest
value (14.9 km) and the density-dependent RMF interaction
TW99 gives the smallest (12.4 km). All the calculated results
except TW99 are coincident with the X-ray spectral analysis
of the quiescent LMXB X7 in the globular cluster 47 Tuc,
which requires a rather large radius of 14.5+1.8

−1.6 km for 1.4M�
compact stars [17].

IV. SUMMARY

In this paper, the equations of state for symmetric nuclear
matter, pure neutron matter, and β-stable neutron star matter
have been studied within the density-dependent relativistic
Hartree-Fock theory with PKO1, PKO2, and PKO3. Substan-
tial effects from the Fock terms are found in describing the
asymmetric nuclear matter at high densities. Because of the
contributions from the Fock terms of σ - and ω-couplings,
a stronger density dependence on the symmetry energy is
obtained from DDRHF at high densities, as compared to the
RMF calculations with the density-dependent meson-nucleon
couplings. Because of the weak density dependence of gρ

in PKO1, which induces remarkable contributions from the
ρ-meson coupling to the symmetry energy, PKO1 shows a
stronger density dependence on the symmetry energy than
either PKO2 or PKO3. With the obtained equations of state
for β-stable nuclear matter, the properties of neutron stars are
investigated within the DDRHF theory for the first time and
the recent observational constraints of compact stars are also
introduced to test the applicability of the DDRHF models.

The extra enhancement from the σ - and ω-exchange terms
on the symmetry energy cause large proton fractions in neutron
stars to be predicted by the DDRHF calculations, which
affects essentially the cooling process of the star. For the DU
process occurring, DDRHF with PKO2 and PKO3 gives a
critical neutron star mass of ∼1.45M�, which is close to the
limit of 1.5M� from modern soft X-ray data analysis in the
temperature-age diagram and fulfills the weaker constraint of

1.35M�. In contrast, fairly small mass limits are presented
by the calculations of DDRHF with PKO1, RMF with the
nonlinear self-couplings of mesons, and RMF with PKDD,
mainly because of their stronger ρ-coupling contributions to
the symmetry energy at high densities. In contrast to these
two cases, the RMF calculations with TW99, DD-ME1, and
DD-ME2 do not support the occurrence of the DU process in
neutron stars at all. In addition, the radii of 1.4M� neutron stars
are correlated with the symmetry energy as well. In general,
a stronger density dependence on the symmetry energy leads
to a larger radius for a 1.4M� neutron star. The radii given
by the DDRHF calculations lie between 13.8 and 14.1 km,
larger than the RMF calculations with the density-dependent
meson-nucleon couplings and smaller than the ones with the
nonlinear self-couplings of mesons except GL-97.

The maximum masses and central densities of neutron
stars are tightly correlated with the behavior of the pressure
with respect to the density. Because of the similar density-
dependent behaviors of the pressure, identical maximum
masses (∼2.5M�) of neutron stars are found in the calculations
of DDRHF and RMF with DD-ME1 and DD-ME2, as well
as central densities around 0.80 fm−3. The results are in
reasonable agreement with the recently reported high pulsar
mass of (2.08 ± 0.19)M� from PSR B1516 + 02B. The mass-
radius relations of neutron stars determined by the DDRHF
calculations are also consistent with the observational data
from thermal radiation measurement in the isolated neutron
star RX J1856, QPO frequency limits in LMXBs 4U 0614 +
09 and 4U 1636-536, and the redshift limit determined in
LMXB EXO 0748-676, which are only partially satisfied in the
RMF calculations with GL-97, NL1, NL3, NLSH, and TW99.
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