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Motivated by recent observational data, the equations of state with the inclusion of strangeness-bearing �

hyperons and the corresponding properties of neutron stars are studied based on the covariant density functional
(CDF) theory. To this end, we specifically employ the density-dependent relativistic Hartree-Fock (DDRHF)
theory and the relativistic mean field (RMF) theory. The inclusion of � hyperons in neutron stars shows
substantial effects in softening the equation of state. Because of the extra suppression effect originating from the
Fock channel, large reductions on both the star mass and radius are predicted by the DDRHF calculations. It is
also found that the mass-radius relations of neutron stars with � hyperons determined by DDRHF with the PKA1
parameter set are in fairly good agreement with the observational data, where a relatively small neutron-star radius
is required. Therefore, it is expected that the exotic degrees of freedom such as the strangeness-bearing structure
may appear and play significant roles inside the neutron stars, which is supported further by the systematical
investigations on the consistency between the maximum neutron-star mass and �-coupling strength.
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I. INTRODUCTION

As the natural laboratories in the universe for nuclear and
particle physics, neutron stars [1] have generated much effort
concentrated on exploring the equation of state (EOS) of
baryonic matter at low temperature and high density [2,3].
Specifically, the mass of the observed neutron stars produces
a strong constraint on the behavior of EOS at supranuclear
density. The most precise measurements for the neutron-star
mass are determined to be less than 1.5M� from the timing
observations of radio binary pulsars [4], which has remained
as the constraint on the EOS for many years. However, the ex-
istence of more massive compact stars has now been unveiled
[5]. In a survey with the Arecibo telescope, an eccentric binary
millisecond pulsar PSR J1903+0327 was found with an unusu-
ally high mass value (1.74 ± 0.04)M� [6]. Recently, a much
larger pulsar mass of (1.97 ± 0.04)M� was measured using
the Shapiro delay for the binary millisecond pulsar J1614-2230
[7]. These data imply a stiff EOS of strongly interacting matter
at high densities, which needs to be further checked by newly
developed land- and space-based observatories.

So far, there still exists considerable theoretical uncertainty
on the EOS at supranuclear densities due to the poorly con-
strained many-body interaction, which consequently leads to
very different maximum mass and radius for a β-stable neutron
star. As indicated by prior studies of neutron stars based
on the density-dependent relativistic Hartree-Fock (DDRHF)
theory [8,9], the maximum mass predicted by the covariant
density functional (CDF) calculations [10,11] lies between
2M� and 2.8M�. The corresponding EOSs deviate remarkably
from each other in the high-density region. In the center of
neutron stars, the density is generally considered to be as high
as 5–10 times the nuclear equilibrium (saturation) density ρ0 ≈
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0.16 fm−3 of neutrons and protons found in laboratory nuclei.
At such high density, exotica such as strangeness-bearing
baryons, condensed mesons, or even deconfined quarks could
come into existence [1], which may play significant roles in
determining the EOS.

In addition to the maximum mass limits, the mass-radius
relation of neutron stars is also constrained by the recent
observations, which leads to another strong restriction to the
EOS. Recently, a relatively soft EOS and symmetry energy
were predicted in the vicinity of the nuclear saturation density
from careful analyses for three Type-I X-ray bursters with
photospheric radius expansion and three transient low-mass
X-ray binaries, which leads to a relatively small neutron-star
radius [12,13]. Such observations are inconsistent with several
commonly used equations of state that account only for
nucleonic degrees of freedom. It is argued that they could
be produced by including the degrees of freedom beyond
nucleons, e.g., hyperons, mesons, and quarks, or possibly by a
better description of nucleonic interactions [12]. As a possible
solution without exotic degrees of freedom, the relativistic
mean field (RMF) model is recalibrated with a soft behavior
of the symmetry energy around the saturation density [14,15].

Compared to other CDF models, significant improvements
have been obtained with DDRHF theory [11,16] in describing
the relativistic symmetry conservation [16–18], the consis-
tency of the isospin dependence in nuclear shell evolution
[19,20], the exotic structures [21,22], and excited modes
[23]. In a previous study [9], significant contributions to the
symmetry energy have been found from the Fock terms in the
isoscalar σ and ω couplings, and the neutron-star properties
determined by DDRHF theory were shown to be in fairly good
agreement with the observational data.

In this paper, we continue the previous work along the
same line and study the roles of exotica in neutron stars based
on the DDRHF theory. It is generally believed that hyperons
appear around twice the normal nuclear matter density in
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neutron-star matter [24–26]. The first hyperon to appear should
be � as it is the lightest one with an attractive potential in
nuclear matter. From the experimental binding energies of
single-� hypernuclei, the potential depth of � in nuclear
matter is estimated to be ∼30 MeV [27]. Motivated by recent
astrophysical observations, as a preliminary attempt, it is thus
interesting to introduce the strangeness degree of freedom
associated with � hyperon into the DDRHF theory and to
investigate the corresponding neutron-star properties.

II. THEORETICAL FRAMEWORK

Within DDRHF, the baryons are described as pointlike
particles and interact with each other by exchanging mesons
(the isoscalar σ and ω as well as isovector ρ and π ) and
photons (A). The � hyperon (� = uds), whose strangeness
S = −1, isospin I = 0, and spin parity JP = 1

2
+

, participates
only in the interactions propagated by the isoscalars, i.e., the
σ and ω mesons. These interactions can be described by the
following Lagrangian density:

L� = ψ̄�(iγ μ∂μ − M� − gσ -�σ − gω-�γ μωμ)ψ�, (1)

where M� denotes the mass of the � hyperon (ψ�). From
the Lagrangian density (1) the contributions to the energy
functional as well as the Dirac equation for the � hyperon can
be determined as for the nucleon [9,11,16,28].

For the β-stable stellar matter containing nucleons, �

hyperons, electrons, and muons, the chemical equilibrium
conditions require that

μp = μn − μe, (2)

μ� = μn, (3)

μμ = μe, (4)

where the chemical potentials μn, μp, μ�, μμ, and μe are
determined by the relativistic energy-momentum relation at
Fermi momentum p = kF [9],

μi = �0(kF,i) + E∗(kF,i), μλ =
√

k2
F,λ + m2

λ. (5)

In the above expressions, i denotes the baryons, i.e., neutrons
(n), protons (p), and � hyperons, and λ represents the leptons,
i.e., electrons (e−) and muons (μ−). Further, combined with
the baryon density conservation and charge neutrality, i.e.,

ρb = ρn + ρp + ρ�, ρp = ρμ + ρe, (6)

the ratios of baryons and leptons can be obtained from the self-
consistent calculations for the stellar matter with given baryon
density ρb. The EOS, the relation between the pressure and
energy density for stellar matter, is then determined by DDRHF
as well as other CDF calculations, in which the baryons interact
by exchanging mesons, whereas the leptons are described as
free fermions.

With the EOS of the stellar matter, the structure of a static,
spherically symmetric, and relativistic star can be determined
by solving the Tolman-Oppenheimer-Volkov (TOV) equations
[29,30]. As in Ref. [9], the EOS in the low-density region
(ρb < 0.08 fm−3) will be provided by the BPS [31] and BBP
[32] models. For a given central density ρ(0) or central pressure

P (0), the input EOS leads to the unique solution of the TOV
equations.

III. RESULTS AND DISCUSSIONS

In the following the theoretical calculations are systemati-
cally performed on the platform of CDF theory [11,16,28,33,
34], specifically the DDRHF theory with effective interactions
PKA1 [16] and PKO3 [19] and the RMF theory with NL-SH
[35], PK1 [36], TW99 [37], and PKDD [36]. The details of the
selected effective Lagrangians are summarized in Table I. For
the RMF calculations, only the Hartree contributions are in-
volved in the baryon-baryon interactions, whereas both Hartree
and Fock terms are taken into account by DDRHF. In NL-SH
and PK1, the nonlinear self-couplings of σ and ω mesons
[36,38,39] are introduced to evaluate the in-medium effects of
nuclear interaction. In TW99, PKDD, PKA1, and PKO3, such
effects are introduced by the density dependence in meson-
nucleon couplings [40,41], and the same density-dependent
behaviors are utilized in the corresponding meson-� coupling
channels; i.e., the meson-baryon coupling constants are treated
as functions of baryon density (ρb = ρn + ρp + ρ�). As
proven by prior studies [9], such prescriptions on the in-
medium effects are still reasonable for exploring the EOS at
supranuclear density as well as in describing the neutron stars.

In the CDF calculations, if not specified, the proportions
between meson-� and meson-nucleon couplings are fixed as
gσ -�/gσ = 0.600 and gω-�/gω = 0.653 [42], and the masses
of � hyperons, electrons, and muons are chosen to be
M� = 1115.0 MeV, me = 0.511 MeV, and mμ = 105.7 MeV,
respectively. In the Lagrangian density (1) we neglect the
strangeness-bearing baryon-baryon interactions, i.e., neglect
the interactions mediated by the strange mesons (the scalar
and vector ones consist of s and s̄ quarks) in the �-� coupling
channel. In contrast to the �-baryon interactions propagated
by ordinary mesons that contain only up and down quarks,
the interactions related to strange quarks still remain an open
question.

With the selected CDF effective Lagrangians, we first study
the equation of state for the β-stable stellar matter containing
nucleons, � hyperons, electrons, and muons (or N�eμ for
short), compared with those without � hyperons (or Neμ

for short). Figure 1(a) shows the pressures of neutron-star
matter as a function of the baryon density ρb with the selected
CDF effective interactions. For the Neμ matter, there exist
substantial deviations (black shaded ellipse) between the

TABLE I. Details of the selected CDF effective Lagrangians.

Fock Nonlinear Nonlinear Density-dependent
term σ term ω term couplings

PKA1 yes no no yes
PKO3 yes no no yes
NLSH no yes no no
PK1 no yes yes no
TW99 no no no yes
PKDD no no no yes
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FIG. 1. (Color online) (a) The pressure as a function of the
baryonic density ρb (fm−3) with different CDF effective interactions
for the stellar matter containing nucleons, � hyperons, electrons, and
muons [red (gray) curves], compared to the one without � hyperons
(black curves). (b) The corresponding contribution from the Hartree
and Fock channels with PKA1 compared with TW99. See the text for
details.

EOSs, among which NL-SH presents the hardest EOS and
TW99 gives the softest one. When the �-hyperon degree of
freedom is introduced, the EOSs become much softer above the
critical density (∼0.3 fm−3), where � hyperons start to appear
in stellar matter. In addition, the deviations [red (gray) shaded
ellipse] on the EOSs are considerably reduced as well. The
distinctly stiff behavior of an EOS with the NL-SH effective
interaction is mainly due to the absence of the nonlinear ω

self-couplings [38]. It is also found that PKA1 presents a
rather harder EOS than TW99 in the Neμ matter, while with
� hyperons PKA1 and TW99 tend to provide almost identical
EOSs until ρb ≈ 0.8 fm−3, where the deviation emerges again.

In fact, such features of the EOS can be understood
qualitatively from the chemical equilibrium between nucleons
and hyperons [see Eq. (3)]. For harder EOSs, the neutron
chemical potential increases more quickly as the density
increases, such that more neutrons will be transferred into �

hyperons. Because the ω-meson couplings with � hyperons,
which play a dominant role at high density, are generally
weaker than those with nucleons as repulsions, the appearance
of � hyperons will clearly soften the EOS. Thus, the stiffer
the EOS of the Neμ matter is, the greater the effort by the

� hyperon to soften the EOS is. When the density reaches
rather large values, the ratios of � hyperons and nucleons
become stable, so that the deviations among the effective
Lagrangians appear again. However, such deviations have
clearly been diminished due to the fairly large proportion of �

hyperons at high density. Compared to the constraint [shaded
area in Fig. 1(a)] suggested in Ref. [12] for cold matter, the
EOSs of N�eμ matter show much better consistency with the
constraint than those for Neμ matter.

In softening the EOS, the occurrence of � hyperons
presents substantial effects, and such effects are enhanced as
the � abundance increases with the density. In the mean-field
language, this is due to weaker �-meson couplings than
those in the nucleonic sector, mainly the strongly reduced
repulsive �-ω coupling, such that one may obtain rather weak
repulsion from the �-hyperonic sector after the attractive
scalar and repulsive vector balance. In this work, we neglect
the strangeness-bearing �-� interactions. Similar to ordinary
�-� interactions mediated and balanced by scalar σ and vector
ω mesons, some additional repulsion is expected from the
strange channels, which may somewhat stiffen the EOS. Notice
that there still remain many mysteries in the strangeness-
bearing �-� interactions, which require more efforts from
both experimental and theoretical physics to clarify.

To illustrate the influence of the Fock term on the EOS
for the Neμ and N�eμ matter, the pressures of neutron-star
matter with DDRHF effective interaction PKA1 and DDRMF
one TW99 are replotted in Fig. 1(b) as functions of the baryon
density. The contributions from the Hartree and Fock channels
are shown as well. Within DDRHF, one can see that the Hartree
terms provide the dominant contributions to the pressures
compared to the Fock terms in both Neμ and N�eμ matter.
It is also seen that the Hartree contributions in PKA1 are
nearly identical to TW99 and that the difference in the EOSs
comes significantly from the Fock term in PKA1. Compared
to the Neμ matter, the occurrence of � hyperons remarkably
suppresses the Fock contributions in the N�eμ matter. This is
mainly due to the effects of ω couplings in the Fock channel.
In Neμ matter the Fock terms in the N-ω couplings contribute
a fairly strong repulsion at high density, whereas in N�eμ

matter the �-ω couplings in the Fock channel represent an
attraction even at high density, which substantially softens the
EOS. As a result, PKA1 and TW99 present nearly identical
behavior of EOSs in the density region about 2–5ρ0, showing
better consistency with the constraint [12] than other CDF
effective Lagrangians.

The symmetry energy is an important quantity for illustrat-
ing the property of asymmetric nuclear matter. In general, the
energy per particle of asymmetric nuclear matter E(ρb, β) can
be expanded in the Taylor series with respect to the asymmetry
parameter β = (ρn − ρp)/(ρn + ρp),

E(ρb, β) = E0(ρb) + β2Esym(ρb) + · · · . (7)

The function E0(ρb) is the binding energy per particle in
symmetric nuclear matter. The empirical parabolic law in
Eq. (7) is confirmed to be reasonable throughout the range
of the asymmetry parameter values, especially at low density.
As a reasonable approximation, one can extract the symmetry
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FIG. 2. (Color online) (a) The symmetry energy Esym (MeV) as
a function of the baryonic density ρb (fm−3) with different CDF
effective interactions for the stellar matter containing nucleons, �

hyperons, electrons, and muons [red (gray) curves], as compared to
the one without � hyperons (black curves). (b) The corresponding
contribution from Hartree and Fock channels with PKA1 compared
with TW99. See the text for details.

energy Esym(ρb) for the β-stable stellar matter by

Esym(ρb) = E(ρb, β) − E0(ρb)

β2
. (8)

Figure 2(a) shows the symmetry energy of neutron-star
matter as a function of the baryon density ρb with different
CDF effective interactions. For the Neμ matter, sizable
enhancements of Esym are seen in the high-density region
with respect to Esym at the saturation density. When the �

hyperon is introduced, the symmetry energies become much
softer, about 50% reduced at high densities. Similar to the
results in Fig. 1, the deviations of Esym among different
EOSs are also reduced in the N�eμ matter. For the Neμ

matter, the Fock terms of σ and ω couplings exhibit significant
contributions to the symmetry energy, which leads to a stronger
density dependence in DDRHF than in DDRMF at high
density [9]. While in the N�eμ matter, both Hartree and Fock
contributions (e.g., in PKA1) are much reduced by � hyperons.
In Fig. 2(b) we can see that the Hartree contributions in PKA1
are essentially identical to TW99, and correspondingly, the
Fock terms provide about 2–3 times reduction as the Hartree
ones do with the occurrence of � hyperons, leading to notably
soft symmetry energy at high densities.

Taking the EOSs in Fig. 1(a) as the input, the systematic
properties of neutron stars, such as the mass-radius relation,
can be obtained by solving the TOV equations. Figure 3(a)
shows the mass-radius relations for the neutron stars that
consist of N�eμ matter (solid lines) compared to those with
Neμ matter (dashed lines). Consistent with the EOSs in Fig. 1,
the inclusion of � hyperons results in a substantial reduction of
the neutron-star mass. When � hyperons appear in a neutron
star, the mass-radius relations deviate from those without �

hyperons and bend down to smaller masses and radii. Close
to the maximum points (symbols in Fig. 3) the mass-radius
relations tend to be stable, which is also different from the
calculations without � hyperons. This can be interpreted by
the behavior of the symmetry energy at high density. In Neμ

matter the symmetry energies increase with the density almost
linearly, while with the inclusion of � hyperons the symmetry
energies become stable or even slightly decrease as the density
becomes high, consistent with the mass-radius relations [see
Fig. 3(a)].

Moreover, the CDF calculations for the Neμ matter predict
quite a different mass for neutron stars. However, when �

hyperons are included, the deviations of the maximum masses
among different EOSs are considerably reduced, namely, the
CDF effective Lagrangians except NL-SH predict vicinal
maximum mass. Comparing PKO3 with PKDD and PK1, we
can see that nearly identical maximum masses are provided by
PKDD and PK1 in both cases, whereas PKO3 gives a larger
value in the case of the Neμ matter. As mentioned above this
can be understood well from the effects of the Fock terms in
softening the EOS and thus reducing the maximum mass of
neutron stars.

Extracted from Fig. 3(a), Table II shows the mass (M�),
radius (km), and central density ρc (fm−3) for neutron stars
with the maximum mass, as well as the threshold densities
ρ�

b (fm−3) and ρ
μ

b (fm−3) for � and muon emergence. For
comparison, the results given by the calculations without �

hyperons are shown in the last three rows. From Table II one
can clearly see the mass reduction induced by the occurrence
of � hyperons, especially in the CDF calculations with the
Fock terms, i.e., the DDRHF calculations (PKA1 and PKO3),
which present a mass reduction of about 0.7M�. In the RMF
calculations the mass reductions range from 0.4 to 0.5 M�,
except for NL-SH, which gives a reduction of about 0.6M�.

The inclusion of � hyperons also has distinct effects on
central density ρc. Among the selected effective Lagrangians
PKA1 and TW99 predict the largest values of ρc, about
8 times the saturation density (∼0.16 fm−3). Compared to
those excluding � hyperons, the central densities increase
roughly 25%–38% (about 0.25–0.50 fm−3) in the DDRHF
calculations (PKO3 and PKA1) and about 10%–15% in the
density-dependent RMF calculations (PKDD and TW99),
while the central density predicted by PK1 decreases with the
�-hyperon inclusion and NL-SH simply gives tiny changes
in ρc.

For the radii of neutron stars with the maximum mass,
distinct reductions are also found in the DDRHF calculations
including � hyperons; e.g., PKA1 predicts a star radius of
about 10.4 km, about 2 km smaller than the one without �

hyperons, and PKO3 has a reduction of about 1 km. In the
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FIG. 3. (Color online) (a) The mass-radius relations for the
neutron stars with � hyperons (solid lines) and without � hyperons
(dashed lines). The symbols denote the neutron stars with maximum
masses. The region excluded by causality is shaded. For compar-
ison the observational constraints from three neutron stars in the
binaries 4U 160-8248 (light gray/white gray), EXO 1745-248 (dark
gray/gray), and 4U 1820-30 (black/black gray) in Ref. [12] are shown
as the 1σ and 2σ confidence contours, and the later analyses in
Ref. [13] are denoted by the shaded areas with two different models
of photospheric radius. (b) The mass and radius for the neutron stars
with maximum masses determined with different �-hyperon coupling
strengths (solid symbols), compared to the ones without � hyperons
(open symbols). See the text for details.

RMF calculations, the neutron-star radii are changed only
slightly (<0.3 km) with the inclusion of � hyperons. Such
discrepant behavior between DDRHF and RMF originates
from the correlations between the radius of neutron stars and
the symmetry energy. Table III shows the bulk quantities of
symmetric nuclear matter at saturation density for the selected
effective Lagrangians. As seen from the slope L and curvature
Ksym on the symmetry energy [43], the DDRMF calculations
(PKDD and TW99) present rather soft symmetry energy,
and the slopes tend to decrease as density becomes high
due to the negative curvature Ksym. Correspondingly, small

TABLE II. Maximum mass Mmax (M�), corresponding radii Rmax

(km), and central density ρc (fm−3) for neutron stars, as well as
the threshold densities ρ�

b (fm−3) and ρ
μ

b (fm−3) of � and muon
emergence. For comparison, the quantities for neutron stars without
� hyperons are shown in the last three rows. The results are calculated
by DDRHF with PKA1 and PKO3 and RMF with PKDD, TW99,
PK1, and NL-SH.

PKA1 PKO3 PKDD TW99 PK1 NL-SH

Mmax 1.713 1.837 1.849 1.647 1.832 2.213
Rmax 10.425 11.495 11.583 10.333 13.048 13.633
ρc 1.314 1.048 1.024 1.292 0.786 0.700
ρ�

b 0.272 0.284 0.322 0.368 0.306 0.282
ρ

μ

b 0.118 0.122 0.108 0.116 0.110 0.114
Mmax 2.423 2.500 2.329 2.078 2.315 2.802
Rmax 12.354 12.487 11.798 10.632 12.705 13.534
ρc 0.810 0.780 0.888 1.104 0.796 0.650

neutron-star radii are obtained in the case of Neμ matter,
especially for TW99. Similar consistence can also be seen
from the calculations of DDRHF and NLRMF. In Fig. 2 it
is clearly shown that the occurrence of � hyperons brings
substantial effects in reducing the slope of the symmetry
energy, mainly from the Fock channel in DDRHF. Due to
such extra suppression, consistently, the reductions of the
star radius are more dramatic than in the case of RMF, as
proved by the results in Table II. On the other hand, it is
also well demonstrated that the properties of the neutron
star are strongly correlated with the values of the symmetry
energy. As seen from the results in Fig. 2(a), one should
notice that the symmetry energies are dramatically changed
with the occurrence of � hyperons at high density, so that
the properties of symmetry energy at normal density are not
enough to describe properly the size and mass of neutron
stars.

Figure 3 shows the 1σ and 2σ confidence contours for
the masses and radii of three neutron stars in the binaries
4U 1608-248 (light gray/white gray), EXO 1745-248 (dark
gray/gray), and 4U 1820-30 (black/black gray) [12], and a
reanalyzed version recently done by another group is denoted
by the shaded areas with two different models of photospheric

TABLE III. Bulk properties of symmetric nuclear matter at
saturation point, i.e., the saturation density ρ0 (fm−3), binding energy
per particle E/A (MeV), incompressibility K (MeV), and symmetry
energy J (MeV) with its slope L (MeV) and curvature Ksym (MeV).
The results are provided by the CDF effective Lagrangians PKA1,
PKO3, PKDD, TW99, NL-SH, and PK1.

ρ0 E/A K J L Ksym

PKA1 0.160 −15.83 229.96 36.02 103.50 213.23
PKO3 0.153 −16.04 262.47 32.99 83.00 116.56
PKDD 0.150 −16.27 262.18 36.79 90.21 −80.74
TW99 0.153 −16.25 240.27 32.77 55.31 −124.68
NL-SH 0.146 −16.35 355.43 36.12 113.66 79.72
PK1 0.148 −16.27 282.69 37.64 115.88 55.33

025806-5



LONG, SUN, HAGINO, AND SAGAWA PHYSICAL REVIEW C 85, 025806 (2012)

radius as well [13]. Different from other constraints such as
those shown in Ref. [9], these observations seriously challenge
our understanding of neutron stars, where a relatively small
value of about 8.7–12.5 km is required for a 1.4M� star,
which is even smaller than the recent conclusion of 9.7–13.9
km from microscopic calculations based on chiral effective
field theory interactions [44]. Therefore a very soft symmetry
energy and EOS near and above several times the saturation
density are needed. In comparison with our calculations, it
is found that the mass-radius relations for the neutron stars
with � hyperons given by PKA1 and TW99 are in perfect
accordance with the observations, especially for the cases
around the maximum mass. Because of a little harder EOSs
at the density region of about 2–5ρ0, PKO3 and PKDD with
� hyperons just marginally cover the constraints, while the
nonlinear RMF versions PK1 and NL-SH could not fulfill the
constraints at all. In the cases without � hyperons, all the
curves are far away from the constraints. Hence, it is strongly
suggested that the exotic degrees of freedom, such as the
strangeness-bearing structure, may appear inside the neutron
stars. It is expected and also found in the CDF calculations
that the � hyperon is the dominant constitution in the core of
neutron star, whereas the neutron is strongly compressed to be
less than 20%, from which the role of the hyperon degree of
freedom is well demonstrated in neutron stars.

In Figs. 1 and 3(a) it is already shown that the � hyperon
plays an important role in softening the EOS and reducing
the neutron-star masses and radii and leads to fairly good
agreements with the constraints [12,13]. One may notice that in
the case of N�eμ matter none of the curves except NL-SH go
through 2.0M�, which is constrained by another observation
[7]. On the other hand, it is also found that in the calculations
with Fock terms, i.e., PKA1 and PKO3, the inclusion of �

hyperons leads to more distinct effects in reducing the neutron-
star masses than those without Fock terms.

In all the above calculations the coupling strengths of �

hyperons are fixed to gσ -�/gσ = 0.600 and gω-�/gω = 0.653.
The � hyperon only participates in the interaction mediated
by the exchange of the isoscalar σ and ω mesons, which
respectively represent as strong attraction (repulsion) and
repulsion (attraction) in Hartree (Fock) channels. It is well
known that at high density the contributions from ω mesons
play the dominant role in determining the EOS as well as
the mass-radius relation for neutron stars. In contrast to the
nucleonic sector, the ω-� Fock terms represent fairly strong
attractions at high density, which remarkably reduces the
repulsion from the �-hyperonic sector, somewhat equivalent to
weakening the �-ω coupling strength. More distinct effects are
therefore found in the DDRHF calculations with the inclusion
of � hyperons in softening the EOS as well as reducing the
neutron-star mass and radius. In fact, a similar reduction of
the neutron star radius can be achieved by including the 

resonance and adopting weaker -ω coupling than the one in
the nucleonic sector [45].

Here we only consider the strangeness system degree of
freedom associated with � hyperons. Approximately and
qualitatively, other strangeness-related contributions such as
� and � hyperons can effectively be taken into account by
modifying the �-coupling strength. Figure 3(b) shows the

neutron stars with the maximum mass extracted from the CDF
calculation with different �-coupling strengths, where the
Greek symbol � denotes the coupling strengths gσ -�/gσ =
0.600 and gω-�/gω = 0.653. That is, for 1.5�, for instance,
the coupling strengths are taken to be gσ -�/gσ = 1.5 × 0.600
and gω-�/gω = 1.5 × 0.653. It is found that the neutron-star
masses are substantially reduced as the � couplings change
from 1.5� to 0.5�, roughly corresponding to the uncertainty
in � coupling. Such behavior can be interpreted by the
consistency between the EOS and �-coupling strength. With
the weakening of � coupling, which is equivalent to reducing
the � repulsion as well as the Fermi energy, more and more
neutrons will be transferred into � hyperons, and the EOS will
become softer and softer. It is also found that with decreasing
� coupling the radii of neutron stars decrease to the minimum
first and then keep increasing. The CDF calculations also show
that the central densities increase to the maximum first and then
begin decreasing with the reduction of � coupling, which is
consistent with the radius evolutions. As shown in Fig. 3(b),
such turning points in the mass-radius relations are rather close
to the original ones (denoted by �), especially for PKA1,
which may imply that the coupling strengths gσ -�/gσ = 0.600
and gω-�/gω = 0.653 are reasonable for the � coupling in
stellar matter as well as in finite nuclei [42].

From Fig. 3(b) one may find that the constraint 1.97 ±
0.04M� [7] is reasonably fulfilled within the uncertainty of
� coupling, while in Fig. 3(a) with the �-coupling strengths
gσ -�/gσ = 0.600 and gω-�/gω = 0.653 the mass-radius rela-
tions present some discrepancies with the constraint, except
for NL-SH, which indicates that the EOSs with � hyperons
seem too soft to reproduce the constraint. One possibility
for these discrepancies is the neglected strangeness-bearing
�-� interactions, which may contribute additional repulsion
to stiffen the EOS. The other possibility to get a stiffer EOS
might be concerned with the quark degree of freedom [46,47],
which may also be helpful for improving the systematics of
the current mass-radius relations in small mass region.

IV. SUMMARY

In summary, we studied the general properties of neutron
stars with the inclusion of strangeness-bearing � hyperons
based on the covariant density functional theory, specifically
the density-dependent relativistic Hartree-Fock theory and the
relativistic mean-field theory with both nonlinear self-coupling
of mesons and density-dependent meson-nucleon couplings.
The inclusion of � hyperons in neutron-star systems shows
substantial effects in softening the equation of state for the
stellar matter as well as in reducing the star mass and radius,
especially when the contribution of the Fock channel is
included. It is shown that the properties of symmetry energy
at normal density are not enough to predict the mass and
radius of a neutron star. The systematical investigations on
the consistence of the maximum neutron-star mass and �-
coupling strength also indicate that exotic degrees of freedom
are one of the important factors for appropriately predicting
the star mass as well as the radius, in agreement with recent
observations.
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