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Description of carbon isotopes within relativistic Hartree-Fock-Bogoliubov theory
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Within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory, the structure properties of carbon isotopes are
systematically studied. To provide better overall description, the finite-range Gogny force D1S with an adjusted
strength factor is adopted as the effective paring interaction in the particle-particle channel. The self-consistent
RHFB calculations with density-dependent meson-nucleon couplings indicate the single-neutron halo structures
in both 17C and 19C, whereas the two-neutron halo in 22C is not well supported. It is also found that close to
the neutron drip line there exists distinct odd-even staggering on neutron radii, which is tightly related with
the blocking effects, and correspondingly the blocking effect plays a significant role in the single-neutron halo
formation.
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I. INTRODUCTION

During past decades, radioactive ion beams (RIBs) have
greatly extended our knowledge of nuclear physics, from
which the critical data for nuclear physics, astrophysics, and
testing the standard model are obtained. With worldwide and
rapid development of RIB facilities, investigations of nuclear
systems under extreme conditions generate new frontiers in
nuclear physics. For example, the exotic nuclei [1–4] have
attracted interest due to their unexpected exotic modes. One of
the representatives is the nuclear halo structure, characterized
by a dilute matter distribution contributed to by several (in
general, two) loosely bound valence neutrons (or protons)
surrounding a condensed core, which was first found in 11Li
[5]. As typical light nuclei, carbon isotopes have been used to
probe possible halo structure [6–8], and the recently measured
reaction cross section of 22C [9] seems to support a two-neutron
halo structure, which has also attracted fairly large interest
from the community [10–12].

In fact, the exotic modes found in weakly bound nuclear
systems also bring serious challenges to the reliability of
nuclear theoretical models. When extended to the limit
of stability of isotopes or isotones, the single neutron or
proton separation energies become comparable to the pairing
gap energy, such that the continuum effects can be easily
involved by pairing correlations and play a significant role in
determining the structure properties of exotic nuclei [13–15].
In terms of the Bogoliubov quasiparticle, the relativistic
Hartree-Bogoliubov (RHB) theory [15–17] has unified the
descriptions of relativistic Hartree (RH) mean field and
pairing correlations, and consequently the continuum effects
are involved automatically. Since the first self-consistent
description of nuclear halo structure in 11Li [13], the RHB
theory has been successfully applied in predicting the giant
halos in Ca [18,19] and Zr [14,19,20] isotopes, as well as the
restoration of relativistic symmetry [21] and superheavy magic
structures [22].
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With the inclusion of Fock terms in the mean field,
the relativistic Hartree-Fock-Bogoliubov (RHFB) theory with
density-dependent meson-nucleon couplings [23] provides a
self-consistent platform for the exploration of exotic nuclei,
e.g., predicting the giant halos in cerium isotopes [19].
In addition, the inclusion of Fock terms has brought sub-
stantial improvements in the self-consistent description of
nuclear shell structures [24] and evolutions [25,26], relativistic
symmetry restorations [24,27,28], and low-energy excitation
modes [29].

In this work, the structural properties of carbon isotopes,
particularly the possible halo structures therein, are studied
systematically within the RHFB and RHB theories. The
contents are organized as follows. In Sec. II, we introduce
the general formalism of the RHFB equations with finite-
range (Gogny) pairing force. In Sec. III, the discussions are
concentrated on the halo structures and odd-even staggering
(OES) on the neutron radii for carbon isotopes. Finally, a brief
summary and perspective are given in Sec. IV.

II. THEORETICAL FRAMEWORK AND
NUMERICAL DETAILS

In relativistic nuclear models the effective force between
the nucleons is mediated by the exchange of mesons and
photons. Based on that, the model Lagrangian contains the
system degrees of freedom associated with the nucleon ψ ,
isoscalar scalar σ meson, isoscalar vector ω meson, isovector
vector ρ meson, isovector pseudoscalar π meson, and the
photon (A) fields [24,30]. Following the standard variational
procedure, one can get the equations of motion for nucleons,
mesons, and photons, namely the Dirac, Klein-Gordon, and
Proca equations, as well as the continuity equation for
energy-momentum tensor, from which is derived the system
Hamiltonian. In the terms of the creation and annihilation
operators (c†α, cα) defined by the stationary solutions of the
Dirac equation, the Hamiltonian operator can be expressed as

H =
∑
αβ

c†αcβTαβ + 1

2

∑
αα′ββ ′

c†αc
†
βcβ ′cα′

∑
φ

V
φ
αβα′β ′ , (1)
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where Tαβ is the kinetic energy and the two-body terms
V

φ
αβα′β ′correspond with the meson- (or photon-) nucleon

couplings denoted by φ,

Tαβ =
∫

d rψ̄α(r)(−iγ · ∇ + M)ψβ(r), (2)

V
φ
αβα′β ′ =

∫
d rd r ′ψ̄α(r)ψ̄β(r ′)
φ(r, r ′)

×Dφ(r, r ′)ψβ ′(r ′)ψα′(r). (3)

In the above equations, 
φ(x, x ′) represent the interaction
matrices associated with the σ -scalar, ω-vector, ρ-vector,
ρ-tensor, ρ-vector-tensor, π -pseudovector, and photon-vector
couplings, Dφ(r, r ′) denotes the relevant meson (photon)
propagator, and M is the nucleon mass (for details, see
Refs. [23,24,30]).

Standing on the level of relativistic Hartree-Fock (RHF)
approach, the contributions from the negative energy states
in the Hamiltonian (1) are neglected as usual, i.e., the so-
called no-sea approximation [30]. The Hartree-Fock ground
state |�0〉 is then determined and consequently the energy
functional E is derived, i.e., the expectation of Hamiltonian
with respect to |�0〉:

|�0〉 =
A∏

i=1

c
†
i |0〉, E = 〈�0|H |�0〉, (4)

where the index i denotes the positive energy states and
|0〉 is the vacuum state. In the energy functional E, the
two-body interactions V φ lead to two types of contributions,
i.e., the direct (Hartree) and exchange (Fock) terms. Within
RHFB [23], the mean field part contains both types of the
contributions, i.e., the RHF approach [31], whereas within
RHB the Fock terms are neglected just for simplicity.

For the open-shell nuclei, the pairing correlations, which
lead to valence particles spreading over the orbits around
the Fermi level, have to be taken into account. Unlike the
simple BCS method [32], the Bogoliubov theory can unify
the descriptions of mean field and pairing correlations in
terms of Bogoliubov quasiparticles. It is of special significance
in exploring the nuclei far from the β-stability line where
the continuum effects become essential and the simple BCS
method may break down. In prior studies with both RHB and
RHFB theories, it has been demonstrated that the scattering of
the Cooper pairs into the continuum plays an essential role in
the formation of the halo structures [13,14,19].

Following the standard procedure of the Bogoliubov trans-
formation [33,34], the RHFB equation can be derived as∫

d r ′
(

h(r, r ′) �(r, r ′)
−�(r, r ′) h(r, r ′)

) (
ψU (r ′)
ψV (r ′)

)

=
(

λ + Eq 0
0 λ − Eq

)(
ψU (r)
ψV (r)

)
, (5)

where ψU and ψV are the quasiparticle spinors, Eq denotes
the single quasiparticle energy, and the chemical potential λ
is introduced to keep the particle number on the average. For
the single-particle Hamiltonian h(r, r ′), it consists of three
parts: the kinetic energy hkin, local potential hD , and nonlocal

TABLE I. Details for the effective interactions PKA1, PKO2
PKO3, PKDD, DDME2, PK1, and NL2. The abbreviations DD and
NL denote the density-dependent meson-nucleon couplings and the
nonlinear self-couplings, respectively.

DD NL Fock term π ρ tensor

PKA1 Yes No Yes Yes Yes
PKO2 Yes No Yes No No
PKO3 Yes No Yes Yes No

PKDD Yes No No No No
DD-ME2 Yes No No No No

PK1 No Yes No No No
NL2 No Yes No No No

potential hE ,

hkin(r, r ′) = γ 0 (γ · p + M) δ(r − r ′), (6a)

hD(r, r ′) = [�T (r)γ5 + �0(r) + γ 0�S(r)]δ(r − r ′), (6b)

hE(r, r ′) =
(

YG(r, r ′) YF (r, r ′)
XG(r, r ′) XF (r, r ′)

)
. (6c)

Details are given in Refs. [23,30]. The pairing potential in
the RHFB equation (5) reads as

�α(r, r ′) = −1

2

∑
β

V
pp
αβ (r, r ′)κβ(r, r ′), (7)

with the pairing tensor κ

κα(r, r ′) = ψVα
(r)∗ψUα

(r ′). (8)

For the pairing interaction V pp, it is generally taken as a
phenomenological form with great success in RHB theory
[16,35] and conventional HFB theory [36,37]. In this work, we
utilize the finite-range Gogny force D1S [38] with additional
strength factor f as the effective pairing interaction,

V (r, r ′) = f
∑
i=1,2

e[(r−r ′)/μi ]2
(Wi + BiP

σ − HiP
τ

−MiPσP τ ), (9)

where μi,Wi, Bi,Hi,Mi(i = 1, 2) are the Gogny parameters
and the factor f is adjusted to provide better overall description
for the selected carbon isotopes.

Due to the numerical difficulties originating from both
RHF mean field and finite-range pairing interactions, the
integrodifferential RHFB equation (5) is solved by expanding
the quasiparticle spinors on the Dirac-Woods-Saxon (DWS)

TABLE II. Blocked quasineutron (ν) orbits of the ground states
of the odd carbon isotopes 15,17,19,21C determined by the calculations
of PKA1, PKO2, PKO3, PKDD, DD-ME2, PK1, and NL2.

PKA1 PKO2 PKO3 PKDD DD-ME2 PK1 NL2

15C νs1/2 νd5/2 νd5/2 νs1/2 νs1/2 νs1/2 νs1/2
17C νs1/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2
19C νd5/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2
21C νs1/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2 νs1/2
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TABLE III. The root mean square deviations (MeV) from the data [44] for the binding energies Eb and single- (Sn) and two-neutron (S2n)
separation energies of the carbon isotopes. The results are extracted from the calculations by PKA1, PKO2 PKO3, PKDD, DD-ME2, PK1, and
NL2 with different pairing strength factor f . See the text for details.

f PKA1 PKO2 PKO3 PKDD DD-ME2 PK1 NL2

Eb Sn S2n Eb Sn S2n Eb Sn S2n Eb Sn S2n Eb Sn S2n Eb Sn S2n Eb Sn S2n

1.00 1.34 0.88 0.81 2.14 0.43 1.02 2.10 0.65 1.66 2.83 0.78 1.72 3.00 0.97 1.92 1.38 0.71 1.42 12.29 1.77 3.87
1.10 1.58 0.78 0.75 1.78 0.41 0.84 1.35 0.59 1.72 2.46 0.65 1.59 2.49 0.78 1.71 0.90 0.66 1.28 11.18 1.64 3.59
1.15 1.71 0.95 1.10 1.43 0.46 0.80 0.90 0.62 1.79 2.17 0.63 1.52 2.29 0.63 1.68 0.60 0.78 1.27 10.54 1.57 3.43
1.20 2.08 1.03 1.22 1.02 0.55 0.81 0.51 0.69 1.80 1.81 0.66 1.48 1.90 0.64 1.73 0.46 0.80 1.27 9.83 1.51 3.25
1.25 2.60 1.14 1.34 0.65 0.67 0.99 0.67 0.79 1.79 1.38 0.72 1.57 1.45 0.68 1.80 0.81 0.92 1.44 9.05 1.46 3.05

basis [39], which can provide appropriate asymptotic behav-
iors for the continuum states in the weakly bound nuclei.
For the calculations of carbon isotopes, the DWS basis pa-
rameters are taken as follows: the spherical box size is fixed to
30 fm and consistently the numbers of basis states with positive
and negative energies are chosen as 48 and 12, respectively.

In this work, we performed systematic calculations for
the carbon isotopes from 10C to 22C with the RHFB and
RHB theories, utilizing the effective interactions with density-
dependent meson couplings, namely PKA1 [24], PKO2 [25]
and PKO3 [25], PKDD [40] and DD-ME2 [41], and the ones
with nonlinear self-couplings, PK1 [40] and NL2 [42]. The
details of the selected effective Lagrangians are shown in
Table I. For the odd carbon isotopes, the blocking effects are
taken into account. In general, e.g., under the BCS scheme,
several orbits around the Fermi surface are blocked separately
and the blocking with the strongest binding corresponds to
the ground state [43]. In present study, the self-consistent
calculations are carried out within the Bogoliubov scheme
and naturally the blocking effects are considered under the
same scheme to keep the consistency of the theory. According
to the mapping relation between the HF single-particle and
Bogoliubov quasiparticle states (see Fig. 11 in Ref. [17]), the
blocked quasiparticle orbit can be determined as the lowest

ones, e.g., the orbits 1s1/2 or 1d5/2 for 15,17,19,21C. Table II
shows the blocking configurations for the ground states of the
odd carbon isotopes close to the neutron drip line.

III. RESULTS AND DISCUSSION

To get appropriate pairing effects, first the systematical
calculations with different pairing strength factors are per-
formed for the carbon isotopes. Table III shows the root
mean square deviations from the data [44] for the binding
energies Eb and single- (Sn) and two-neutron (S2n) separation
energies extracted from the calculations with the selected
effective Lagrangians in Table I. It is found that all the
effective interactions present appropriate agreement with the
data, except NL2, which fails to provide enough binding for
carbon isotopes with about 10% deviations. It can be also seen
that the systematics on single- and two-neutron separation
energies are improved quantitatively with the modified pairing
interactions. Referred to the single-neutron separation energy
Sn, the optimized strength factors are determined as f = 1.1
for PKA1, PKO2, and PKO3, f = 1.15 for PKDD, DD-ME2,
and PK1, and f = 1.25 for NL2. Among the selected effective
Lagrangians, one can find in Table III that PKO2 provides the
best agreement with the data on both Sn and S2n, which may
imply the most reliable systematics.

FIG. 1. (Color online) Single-neutron (Sn: left panels) and two-neutron (S2n: right panels) separation energies for carbon isotopes from 14C
to 22C. The results are calculated by RHFB with PKA1 and PKO2 (upper panels) and by RHB with PK1 and PKDD (lower panels). The filled
circles and open upward-pointing triangles denote the results calculated by taking the Gogny force D1S with and without optimized strength
factor as the effective pairing interactions, respectively. The data extracted from Ref. [44] are shown in filled squares.
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Figure 1 presents the single-neutron separation energies Sn

(left panels) and two-neutron ones S2n (right panels) of carbon
isotopes calculated with PKA1, PKO2, PK1, and PKDD as
compared to the data (filled squares) [44]. The comparison is
performed between the calculations with the original effective
pairing interaction Gogny-D1S (open upward-pointing trian-
gles) and the ones with the optimized strength factor f (filled
circles). From Fig. 1 one can find that the modification on
the pairing force brings some systematical improvements on
both Sn and S2n, especially for the calculations with PKA1
and PKO2. The results calculated by PKO3 and DD-ME2
are omitted because of the similar systematics with PKO2
and PKDD, respectively. Specifically with the original Gogny-
D1S, PKO2 cannot reproduce the drip line 22C, which becomes
bound with enhanced pairing force (see Fig. 1). Combined with
the results in Table III, we utilize PKO2 with optimized pairing
force as the representative to analyze the detailed structure
properties of carbon isotopes in the following discussions.

Aiming at the possible halo structure in carbon isotopes,
Fig. 2 shows the neutron and proton density distributions
provided by PKO2 calculations for even [plot (a)] and odd
[plot (b)] carbon isotopes. As shown in Fig. 2(a), it seems
that the neutron densities of the even isotopes tend to be more
diffuse but not distinct enough to support the occurrence of
a halo structure when close to the drip line. From the recent
data [44] the two-neutron separation energy of 22C is 1.56 MeV,
which implies that the last two valence neutrons are still bound
too deeply to spread over a fairly wide range. Hence 22C may
not be a good candidate of well-developed two-neutron halo
structure. However, in Fig. 2(b) distinct evidence is presented
to demonstrate the halo occurrences in 17C and 19C, i.e.,
more diffused neutron distributions with less neutrons than

FIG. 2. (Color online) Neutron and proton density distributions
for even [plot (a)] and odd [plot (b)] carbon isotopes. The results are
calculated by RHFB with PKO2 and the optimized pairing strength
factor is adopted as f = 1.10. See the text for details.

FIG. 3. (Color online) Contributions to neutron density (ρn) from
(a) canonical neutron orbits (ρnlj ) and the continuum in 19C and
(b) neutron numbers (NR>r ) beyond the sphere with radius r for 17C,
18C, 19C, and 20C. The results are extracted from the calculations of
RHFB with PKO2. rn,17C, rn,18C, rn,19C, and rn,20C denote the root mean
square neutron radii of 17C, 18C,19C, and 20C, respectively.

22C. In fact, strong evidence of the halo occurrence in 19C
can be found from the parallel momentum distribution of 18C
after the breakup of 19C [6]. As shown in Fig. 1, nearly zero
single-neutron separation energies of 17C and 19C can be also
treated as more evidence for the existence of a single-neutron
halo structure. For 21C the negative value of Sn leads to a
diverged matter distribution, which might not be a bound
nucleus.

To further illustrate the halo occurrence, Fig. 3(a) presents
the contributions to the neutron density from different canon-
ical single-particle orbits. It is clearly shown that the dilute
matter distribution at large radial distance is dominated by
low-j state 2s1/2 and the continuum, in accordance with the
evidence of halo occurrences in 11Li [13] and Ca isotopes [18].
Consistently Fig. 3(b) presents other direct evidence, i.e., the
number of neutrons NR>r located beyond the sphere with
radius r . From Fig. 3(b) it can be determined that there exist
evident single-neutron halo structures in 17,19C due to fairly
large amount of neutrons spreading far beyond the neutron
radii rn. In contrast the values of NR>r in neutron-richer
isotopes 18,20C drop sharply with the increase of radius r ,
consistent with the neutron distributions shown in Fig. 2(a).
Combined with the results in Fig. 3(a), one can find that both
canonical state 2s1/2 and the continuum present substantial
contributions in the formation of halo, while dominated by the
formal one because of its zero centrifugal barrier.

As the complemented demonstration, Figure 4 shows the
neutron canonical single-particle energies for the carbon
isotopes from 15C to 22C, where the lengths of the ultrathick
bar denote the occupation probabilities in half. From Fig. 4
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FIG. 4. (Color online) Canonical neutron single-particle energies
for carbon isotopes. The results are extracted from the RHFB
calculations with PKO2. The lengths of thick bars correspond with
the occupation probabilities of neutron orbits in half and EF represent
the Fermi levels.

one can find that the valence orbits 2s1/2 and 1d5/2 are close
to each another and such high level density in general leads to
strong pairing effects. Although both valence orbits are fairly
close to the continuum limit, the self-consistent RHFB and
RHB calculations only support 17,19C as the candidates of halo
nuclei instead of even drip-line isotope 22C, which can be well
understood from the blocking effects discussed later.

It should be mentioned that the canonical single-particle
states in Fig. 4 are determined from the diagonalization of
the density matrix constructed in the Bogoliubov quasiparticle
space. In the calculations of 17,19C with PKO2, the neutron
quasiparticle states near the Fermi surface are blocked, namely
the lowest one, 1s1/2. According to the mapping relation
between the Bogoliubov quasiparticle and canonical single-
particle states [15,17], the corresponding contributions of the
blocked quasineutron orbits will be mainly mapped into the
canonical ones near the Fermi surface, i.e., the canonical 2s1/2

and 3s1/2 states, as shown in Fig. 4. Compared to the even
isotopes, the neutron staying on the canonical orbit 2s1/2

then becomes much less bound in the odd carbons due to
lack of the extra binding from pairing correlations, which
is also illustrated by nearly zero values of Sn in Fig. 1. As
a result, the probability density of the valence state 2s1/2

tends to be much more diffuse than those in even isotopes

to develop the halo structure in 17,19C. Due to the blocking of
s orbit, the continuum effects are also enhanced relatively in
the odd isotopes because the neutron Cooper pairs in d5/2

orbit can be only scattered into the continuum by pairing
correlations. In addition, the odd-even staggering on the
position of the canonical state 3s1/2 (see Fig. 4) can be also
interpreted as blocking effects. In the odd carbon isotopes, the
odd quasineutron can be mapped partially into the canonical
3s1/2 orbits while still visible, e.g., v2 = 0.034 for 19C. As
a result, relatively enhanced couplings with the core will
remarkably lower the 3s1/2 orbit. In even isotopes, the pairing
correlations constrain the valence neutrons, spreading mostly
over the valence orbits 2s1/2 and 1d5/2, and fewer neutrons
can be scattered into the 3s1/2 states in the continuum, e.g.,
v2 = 0.004 for 20C, which therefore become high-lying ones.

As we know, the pairing correlations play significant roles
in the halo occurrences for the even nuclear systems, not only
in stabilizing the nucleus itself but also in developing the halos
by scattering the Cooper pairs into the low-lying s or p orbits.
The typical examples are 11Li, the drip-line isotopes of Ca, Zr,
and Ce. For the even carbons, particularly 22C, it seems that the
extra binding from the pairing correlations makes the s orbit
too bound to get dilute matter distribution, which also leads to
a fairly large two-neutron separation energy S2n (see Fig. 1). In
contrast, for 17,19C, due to the absence of extra pairing binding,
the odd neutron in the s orbit presents a substantial contribution
in the formation of halo structure, which also results in the OES
on the neutron radii of carbon isotopes.

Before discussing the OES of neutron radii, it is worth-
while to check the quantitative precision for the theoretical
description of the radius. Table IV shows the matter radii of
neutron-rich carbon isotopes obtained from the calculations
of PKA1, PKO2, PKO3, PKDD, DD-ME2, and PK1, as
compared to the experimental data [45,46]. It is found
that both RHFB and RHB calculations with the selected
effective Lagrangians provide appropriate agreement with
the data, which to some extent demonstrates the theoretical
reliability.

In fact not only for the total ones, the selected effective
Lagrangians with optimized pairing forces also present proper
quantitative descriptions for the neutron radii. As shown in
Fig. 5(a) and referred to the data [46], the neutron root
mean square radii from 14C to 22C are well reproduced by
both RHFB and RHB calculations to certain quantitative

TABLE IV. Matter radii (fm) for carbon isotopes extracted from the calculations of PKA1, PKO2 PKO3, PKDD, DD-ME2, and PK1, as
compared to the experimental data [45,46].

14C 15C 16C 17C 18C 19C 20C

PKA1 2.53 2.74 2.73 2.89 2.91 3.02 3.08
PKO2 2.43 2.55 2.63 2.92 2.81 3.11 2.97
PKO3 2.47 2.59 2.68 2.91 2.86 3.21 3.02
PKDD 2.43 2.75 2.66 2.91 2.86 3.26 3.03
DD-ME2 2.55 2.68 2.76 2.93 2.94 3.24 3.10
PK1 2.42 2.72 2.65 2.86 2.84 3.06 3.01
Ref. [45] 2.62(6) 2.78(9) 2.76(6) 3.04(11) 2.90(19) 2.74(96)
Ref. [46] 2.30(7) 2.48(3) 2.70(3) 2.72(3) 2.82(4) 3.13(7) 2.98(5)

2.50(8) 2.73(4) 3.23(8)
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FIG. 5. (Color online) (a) Neutron root mean square radii cal-
culated by RHFB with PKA1, PKO2, and PKO3 and by RHB with
PKDD and PK1, as compared with the data [for 19C it reads as
2.86(1.4) fm] [45], and (b) corresponding contributions from the
neutron core orbits (1s1/2, 1p3/2, and 1p1/2), valence orbits (2s1/2 and
1d5/2), and the continuum. The results are provided by the calculations
of RHFB with PKO2. See the text for details.

precision. Evidently as shown in Fig. 5(a) all the theoretical
calculations present distinct OES on the neutron radii, in
accordance with the experimental systematics. Specifically,
as seen from Fig. 5(b), such OES is determined by the valence
neutrons lying in the canonical orbit 2s1/2 and also depends on
whether the corresponding Bogoliubov quasiparticle s orbit is

blocked. Referring to Table II, one can find that the blocking
configurations are consistent with the OES in Fig. 5(a). In 15C,
which has larger neutron radius than 16C in the calculations
with PKA1, PKDD, and PK1, the quasiparticle s orbit is
blocked. Due to a similar reason, and consistent with the halo
occurrence, the neutron radii of halo nuclei 17,19C are distinctly
larger than those of the even neighbors. The exceptions are the
calculations with PKO2 and PKO3 at 15C and the one with
PKA1 at 19C, where the neutron radii change smoothly. As
seen from Table II such exceptional cases correspond with the
blocking of d5/2 orbit, in which the odd neutron is localized
mostly inside the nucleus by the centrifugal barrier. As a
result, the ground state of 19C determined by PKA1 does
not correspond with a halo structure since the odd neutron
blocks the d5/2 orbit, and due to the pairing effects the paired
neutrons in the low-j s state are bound too strongly to distribute
extensively.

As further illustration of the consistent relation between
the OES and blocking configurations, Table V shows the
binding energies and neutron radii of 15,17,19C extracted from
the self-consistent calculations with the blockings of s1/2 and
d5/2 orbits, respectively. As shown in the lower panel, the
blockings of the low-j s orbit in general lead to more extensive
neutron distributions, from which are also well demonstrated
by the blocking effects in the formation of single-neutron halo
structure of 17,19C. Specifically for the calculations of 19C with
different blocking, the binding energies determined by PKA1
are close to each another and in fact when s orbit is blocked
PKA1 also supports the halo occurrence in 19C. In contrast
the others present distinct differences in the binding energies,
especially for PKO2, which confirms the halo emergence in
ground state.

It is well known that pairing correlation plays an important
role in stabilizing the finite nuclei, especially the exotic ones.
For 11Li, the neutron drip-line isotopes of Ca, Zr, and Ce,
it is already demonstrated that the pairing correlations show

TABLE V. Binding energies in MeV (upper panel) and neutron radii in fm (lower panel) for 15,17,19C calculated by the effective Lagrangians
PKA1, PKO2, PKO3, PKDD, DD-ME2, and PK1 with different blocking configurations. For each odd isotopes, the first and second rows
correspond with blocking neutron (ν) orbits s1/2 and d5/2, respectively. The bold type denotes the ground states.

PKA1 PKO2 PKO3 PKDD DD-ME2 PK1

Binding energies (MeV)
15C −107.48 −104.98 −105.95 −105.30 −105.79 −105.91

−106.63 −105.69 −106.11 −105.23 −105.35 −105.79
17C −112.99 −110.32 −110.81 −109.83 −110.11 −110.76

−112.44 −110.06 −110.30 −109.30 −109.50 −110.21
19C −117.03 −114.17 −114.43 −113.35 −113.21 −114.78

−117.21 −113.13 −113.65 −112.72 −112.71 −114.16

Neutron radii (fm)
15C 2.92 3.05 2.99 2.98 2.93 2.94

2.66 2.67 2.71 2.70 2.72 2.88
17C 3.10 3.15 3.14 3.15 3.16 3.09

3.04 2.91 2.98 2.99 3.04 2.97
19C 3.42 3.37 3.48 3.57 4.20 3.31

3.23 4.85 3.43 3.31 3.60 3.19

034311-6



DESCRIPTION OF CARBON ISOTOPES WITHIN . . . PHYSICAL REVIEW C 87, 034311 (2013)

positive effects in both stabilizing and developing the halo
structures. In the RHFB and RHB calculations of 17,19C, the
quasiparticle s orbit is blocked and the corresponding contri-
butions are mainly mapped to the canonical orbit 2s1/2, which
plays the dominate role in the single-neutron halo formation
of 17,19C. This implies that the unpaired odd neutron in low-j
orbit may also contribute to develop a halo structure when it
is not so deeply bound. From previous analysis it is just due
to the lack of extra binding from the pairing correlations that
the odd neutron in s orbit can spread far beyond the center of
nucleus.

IV. SUMMARY AND PERSPECTIVES

In this work we have systematically calculated the carbon
isotopes using the relativistic Hartree-Fock-Bogliubov theory
with PKA1, PKO2, and PKO3 as well as the relativistic
Hartree-Bogliubov theory with PKDD, DD-ME2, PK1, and
NL2. It is found that with the optimized pairing force the
selected effective Lagrangians except NL2 can properly
describe the structural properties of the carbon isotopes, e.g.,
reproducing the binding energies and matter radii by certain
quantitative precision. Specifically, distinct evidence has
demonstrated the single-neutron halo occurrences in 17,19C, as
well as the odd-even staggering (OES) of neutron radii in the
vicinity of the neutron drip line. The self-consistent RHFB or
RHB calculations do not support the emergence of two-neutron
halo structure in 22C as indicated by the experimental reaction
cross-sectional measurement [9]. Further detailed analysis
shows that the halo emergences in 17,19C, as well as the OES
of neutron radii, are essentially concerned with the blocking
effects in the odd carbon isotopes. Unlike the even nuclear

systems, in which the pairing correlations play significant
roles in both developing and stabilizing the halo structures,
the unpaired odd neutron in a weakly bound low-j s orbit
dominates the halo formation in 17,19C as well as reproduces
the OES of neutron radii for the drip-line carbon isotopes.

It should be noticed that for the odd carbons the blocking
treatment in this work is just the first-order evaluation of
the blocking effects, and the current effects induced by the
odd neutron are neglected as well. In addition, due to the
limit of the present theoretical platform, we only performed
the spherical calculations for the carbon isotopes within the
relativistic Hartree and Hartree-Fock theories, while some
carbon isotopes are potentially deformed. After considering
the shape fluctuations in both β and γ deformations, the
average neutron quadrupole deformations (〈β〉n, 〈γ 〉n) of
16,18,20C are (0.50, 21◦), (0.49, 29◦), and (0.50, 21◦), respec-
tively [47]. It is then expected that the shape fluctuations
will bring some influence on the structure properties of the
carbon isotopes, especially in the vicinity of the drip line.
Therefore, the self-consistent treatment of the deformation
as well as the odd-particle effects is expected to be con-
sidered carefully for more reliable description of carbon
isotopes.
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