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Nuclear fourth-order symmetry energy and its effects on neutron star properties
in the relativistic Hartree-Fock theory
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Adopting the density dependent relativistic mean-field (RMF) and relativistic Hartree-Fock (RHF) approaches,
the properties of the nuclear fourth-order symmetry energy S4 are studied within the covariant density functional
(CDF) theory. It is found that the fourth-order symmetry energies are suppressed in RHF at both saturation and
supranuclear densities, where the extra contribution from the Fock terms is demonstrated, specifically via the
isoscalar meson-nucleon coupling channels. The reservation of S4 and higher-order symmetry energies in the
nuclear equation of state then affects essentially the prediction of neutron star properties, which is illustrated
in quantities such as the proton fraction, the core-crust transition density, as well as the fraction of crustal
moment of inertia. Since the Fock terms enhance the density dependence of the thermodynamical potential, the
RHF calculations predict systematically smaller values of density, proton fraction, and pressure at the core-crust
transition boundary of neutron stars than density dependent RMF ones. In addition, a linear anticorrelation between
the core-crust transition density ρt and the density slope of symmetry energy L is found which is then utilized
to constrain the core-crust transition density as ρt ∼ [0.069,0.098] fm−3 with the recent empirical information
on L. The study clarifies the important role of the fourth-order symmetry energy in determining the properties of
nuclear matter at extreme isospin or density conditions.
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I. INTRODUCTION

The study of the nuclear equation of state (EoS), especially
its properties at extreme conditions, is a longstanding goal not
only in nuclear related science but also in astrophysics [1–4].
In recent years, facilities for radioactive ion beams (RIBs)
have been developing competitively at terrestrial laboratories,
which have made great progress in exploring the nuclear
EoS at both supranuclear and subnuclear densities [5–9]. In
particular, the isospin-asymmetric part of the EoS, namely
the nuclear symmetry energy, has proved to be a crucial
issue in understanding the physics of several terrestrial exper-
iments and astrophysical observations, such as neutron skin
thickness [10,11], dipole excitation modes of stable or exotic
nuclei [12], isospin diffusion and π+/π− ratio in heavy-ion
collisions at intermediate energies [4,13,14], parity violating
electron scattering [15], as well as the radius, moment of
inertia, stability of matter, and cooling mechanism of neutron
stars [16–21].

Theoretically, the nuclear symmetry energy is introduced by
expanding the binding energy per nucleon in a Taylor series
with respect to the isospin asymmetry, and is usually approxi-
mated to its second-order term S2 for convenience. Although a
number of phenomenological and microscopic nuclear models
have been devoted to constrain the symmetry energy around
the saturation density ρ0 and its density dependence [22–
28], large uncertainties still remain [29–32]. Recently, a data
collective analysis constrained the symmetry energy S2(ρ0)
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at the saturation density as S2(ρ0) = 31.7 ± 3.2 MeV and its
density slope parameter as L = 58.7 ± 28.1 MeV, retaining
a relatively large error bar [33], implying the necessity to
improve the work further on both experimental and theoretical
sides.

Recently, it has been indicated that terms of symmetry
energy with order higher than S2 may become non-negligible
and should be considered carefully under some extreme
physical conditions [34–43]. Especially, the inclusion of the
fourth-order term of nuclear symmetry energy S4 beyond
the parabolic approximation [44] in the EoS could exert great
impact on the description of neutron star properties, such
as the core-crust transition density [36–38,43], the proton
fraction, and the critical density for the direct Urca (DUrca)
process [34,35,38,39]. However, because of the absence of
experimental information, there is still large uncertainty in
constraining the magnitude of S4, even at the saturation density
ρ0. It is found that the magnitude of S4(ρ0) is generally smaller
than 2 MeV within the nonrelativistic [42,45] and relativistic
mean-field models [38], as well as the chiral pion-nucleon dy-
namics [40,46]. Alternatively, the analysis using the quantum
molecular dynamics model [47] and the extraction from an
extended nuclear mass formula [41] predict significantly large
values of S4(ρ0), for example 20.0 ± 4.6 MeV in the latter one.
In addition, the kinetic part εk of the energy density functional
has been identified as a particularly good indicator of the short-
range correlated (SRC) nucleon pairs [48–55]. Theoretically,
these SRC pairs can happen due to the tensor part of the
nucleon-nucleon interaction [56–59], which consequently is
revealed to reduce the kinetic part of S2(ρ0) [49,50,53–55,60]
and increase that of S4(ρ0) [61] significantly.
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The covariant density functional (CDF) theory, based on
the meson exchange diagram of nuclear force, has achieved
great successes in describing the bulk properties of nuclear
matter and the ground state and excitation properties of finite
nuclei [62–72]. In recent decades, the CDF theory without
Fock terms, namely the relativistic mean field (RMF) theory,
occupied CDF efforts with various versions of Lagrangian [73–
78]. Since the Fock terms are ignored in the RMF theory, the
important degrees of freedom in the meson exchange diagrams,
such as the pseudovector π couplings, are dropped. Moreover,
the nonlocal potential as well as the tensor part of nuclear
force cannot be self-consistently taken into account. With
increasing computer capability, the relativistic Hartree-Fock
(RHF) theory [79–82], also referred as the CDF theory with
Fock terms, achieved success in terms of the density-dependent
meson-nucleon coupling [83–85]. Significant improvements
were obtained by the RHF theory in exploring nuclear structure
[86–88], nuclear excitation and decay modes [89,90], as well
as nuclear matter and neutron star properties [60,86,91–93].

In fact, with the inclusion of the Fock terms in the CDF
theory, it was realized that isoscalar meson-nucleon cou-
pling except for the isovector one also plays a vital role in
studying the isospin properties of nuclear matter, such as the
nuclear symmetry energy and the neutron-proton effective
mass splitting [60,83,91–95]. After including the � hyperons
into β-equilibrium nuclear matter, the symmetry energy at
high densities is suppressed enormously due to the extra
suppression effect originating from the Fock channel, leading
to a relatively small predicted value of the neutron-star radius
[91]. Additionally, it was recognized that the Fock diagrams of
the meson-nucleon couplings can take the important ingredient
of nuclear force—the tensor force—into account naturally
[96], which softens the density-dependent behavior of the
symmetry energy and consequently raises the threshold density
for the direct Urca process that cools the neutron star rapidly
[93]. Furthermore, a sizable reduction of the kinetic part of
S2 at the supranuclear density region is found in the RHF
calculations compared to the RMF ones, regarded partly as
the effect of the nuclear tensor force [60].

The studies demonstrated that the Fock terms are of great
importance when talking about isospin related physics in the
CDF theory, and it is interesting to further investigate their
effects on higher-order symmetry energy, instead of S2 effects,
and the corresponding influence on neutron star properties,
which is the motivation of this work. In the following, we will
briefly introduce the theoretical framework of the RHF theory
for nuclear matter in Sec. II. Then in Sec. III we discuss in
detail the density-dependent behavior of nuclear fourth-order
symmetry energy S4, and its properties at saturation density
within the RHF theory and the effects of S4 on neutron
star properties—including the proton fraction, the core-crust
transition, as well as the moment of inertia utilized to describe
the glitch phenomenon—are given later. Finally, a summary is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, the main formalism of the CDF theory with
the inclusion of the Fock terms will be briefly recalled for

nuclear matter, which is then utilized to extract various orders
of the symmetry energy. For more details of the CDF theory,
especially the RHF theory for nuclear matter, we refer the
reader to Refs. [79,92].

Via the meson exchange diagrams of nuclear force, the CDF
theory starts from an effective Lagrangian density which can
be deduced from the conjunction of the degrees of freedom
of nucleon and mesons, while the photon field is ignored
for uniform nuclear matter systems. Following the standard
procedure [79], the energy density functional (EDF) is then
obtained by taking the expectation value of the Hamiltonian
with respect to the Hartree-Fock ground state, which consists
of three parts:

εkin =
∑
psτ

ū(p,s,τ )(γ · p + M)u(p,s,τ ), (1a)

εD
φ = 1

2

∑
p1s1τ1

∑
p2s2τ2

ū(p1,s1,τ1)ū(p2,s2,τ2)	φ(1,2)

× 1

m2
φ

u(p2,s2,τ2)u(p1,s1,τ1), (1b)

εE
φ = −1

2

∑
p1s1τ1

∑
p2s2τ2

ū(p1,s1,τ1)ū(p2,s2,τ2)	φ(1,2)

× 1

m2
φ + q2

u(p1,s1,τ1)u(p2,s2,τ2), (1c)

where εkin denotes the kinetic EDF, and εD
φ and εE

φ correspond
to the Hartree (direct) and Fock (exchange) terms of the
potential EDF, where φ = σ,ω,ρ,π represents various meson-
nucleon couplings and 	φ(1,2) are corresponding interaction
vertices. The Dirac spinors u(p,s,τ ) depend on the momentum
p, spin s, and isospin τ of the nucleon:

u(p,s,τ ) =
(

E∗ + M∗

2E∗

)1/2( 1
σ · p∗

E∗+M∗

)
χsχτ . (2)

Here χs and χτ stand for the spin and isospin wave functions,
respectively. The starred quantities, which obey the effective
relativistic mass-energy relation E∗2 = M∗2 + p∗2, are de-
fined as

M∗ = M + S(p), (3a)

p∗ = p + p̂V (p), (3b)

E∗ = E − 0(p), (3c)

where S is the scalar self-energy, 0 and V are the time and
space components of the vector self-energy, respectively, and
p̂ is the unit vector along p.

Substituting Eq. (2) into Eq. (1a), the kinetic EDF is then
expressed as

εkin = 1

π2

∑
i=n,p

∫ kF,i

0
p2dp[MM̂ + pP̂ ], (4)

where the hatted quantities are introduced by

M̂ = M∗

E∗ , P̂ = p∗

E∗ . (5)
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εkin can be divided again according to the self-energy so as
to study the influence of various meson-nucleon coupling
channels quantitatively [60]:

εkin = 1

π2

∑
i=n,p

∫ kF,i

0
p2dp

1

E∗

×
⎡
⎣M2+p2+

∑
φ

M
D,φ
S +

∑
φ

(
M

E,φ
S + p

E,φ
V

)⎤⎦

≡ εM
kin + ε

p
kin + εD

kin + εE
kin, (6)

where εM
kin and ε

p
kin correspond to the contributions from the

rest mass and the momentum, respectively, εD
kin denotes the

contribution from the Hartree (direct) terms of the scalar self-
energy 

D,φ
S , and εE

kin represents the total contribution from
the Fock (exchange) terms of the scalar self-energy 

E,φ
S and

the space component of the vector self-energy 
E,φ
V .

The EoS of asymmetric nuclear matter at zero temperature
is defined by its binding energy per nucleon E(ρ,δ), where ρ =
ρn + ρp denotes the baryon density, and δ ≡ (ρn − ρp)/(ρn +
ρp) is the isospin asymmetry with ρn/p the neutron/proton
density. Conventionally, due to the difficulty of analytical
extraction, the various orders of nuclear symmetry energies can
be approximately extracted by expanding the zero-temperature
EoS in a Taylor series with respect to the δ. The convergence of
such an isospin-asymmetry expansion has been acknowledged
in the self-consistent mean-field calculations, such as the
CDF theory (at the first Hartree-Fock level) adopted in this
work, but is broken overall when second-order perturbative
contributions are involved in many-body theory [46]. Within
this approximation, the EoS is then expressed as

E(ρ,δ) = E0(ρ) +
∞∑

n=1

S2n(ρ)δ2n, (7a)

S2n(ρ) = 1

(2n)!

∂2nE(ρ,δ)

∂δ2n

∣∣∣∣
δ=0

, (7b)

where E0(ρ) = E(ρ,δ = 0) denotes the EoS of symmetric
nuclear matter, and the coefficients S2n(ρ) give the 2n-order
symmetry energy, where n = 1 presents the density-dependent
symmetry energy S2(ρ) and n = 2 the fourth-order symmetry
energy S4(ρ), respectively,

S2(ρ) = 1

2!

∂2E(ρ,δ)

∂δ2

∣∣∣∣
δ=0

, (8a)

S4(ρ) = 1

4!

∂4E(ρ,δ)

∂δ4

∣∣∣∣
δ=0

. (8b)

The odd-order terms of the expansion are discarded in Eq. (7a)
owing to assuming the charge independence of the nuclear
force and neglecting the Coulomb interaction in infinite nuclear
matter. The density slope parameter L is used to reflect the
density dependence of S2(ρ) at saturation density ρ0, which is
defined as

L = 3ρ0
∂S2(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

. (9)

In addition, the various order of terms in isospin asymmetry
S2n(ρ) can be decomposed according to the separation of the
EDF, namely,

S2n = S2n,pot + S2n,kin, (10a)

S2n,pot = 1

(2n)!

∂2n

∂δ2n

1

ρ

⎡
⎣∑

φ

(
εD
φ + εE

φ

)⎤⎦
∣∣∣∣∣∣
δ=0

≡ SD
2n,pot + SE

2n,pot, (10b)

S2n,kin = 1

(2n)!

∂2n(εkin/ρ)

∂δ2n

∣∣∣∣
δ=0

≡ SM
2n,kin + S

p
2n,kin + SD

2n,kin + SE
2n,kin, (10c)

where S2n,pot and S2n,kin denote the potential and kinetic
part of S2n. Additionally, SD

2n,pot (SE
2n,pot) corresponds to the

contributions from the Hartree (Fock) terms to S2n,pot, while
SM

2n,kin, S
p
2n,kin, SD

2n,kin, and SE
2n,kin define the corresponding

contributions to S2n,kin from Eq. (6), respectively.

III. RESULTS AND DISCUSSION

In this work, the properties of nuclear fourth-order symme-
try energy, and correspondingly its effects on several related
quantities in neutron stars are studied in the CDF theory.
Much attention is paid to the role of the Fock terms. The
calculations are performed by using the RHF functionals PKA1
[84], PKO1 [83], PKO2, and PKO3 [97], in comparison with
the RMF functionals PKDD [76], TW99 [75], DD-ME1 [98],
and DD-ME2 [99]. These functionals have been adopted in
the description of nuclear matter and finite nuclei successfully,
taking advantage of the density-dependent meson-nucleon
couplings, by which the medium effects of nuclear force in a
nuclear many-body system are taken into account effectively.
Notice that, due to the limitation of the approach itself, the
π and ρ-tensor couplings are missing in four selected RMF
functionals, while the RHF ones PKO1, PKO2, and PKO3
contain the π couplings, and PKA1 contains both. The appli-
cations of the RHF theory to the physics of nuclear matter and
neutron stars have addressed essential role of the Fock terms,
and one can find the details in Refs. [60,83,91–93,100–105].
For the symmetry energies in Eq. (7b), the seven-point finite
difference method is adopted in the practical calculations. The
convergence and stability of the numerical results have been
checked carefully, and the step size of isospin asymmetry δ is
suggested as 0.01.

A. Properties of nuclear fourth-order symmetry energy

1. Density dependence of nuclear fourth-order symmetry energy

It is generally agreed that the effects of nuclear fourth-
order symmetry energy S4(ρ) become non-negligible at high
densities and at extreme isospin like in the interior of neutron
stars, while its density dependent behavior is still poorly
known. From the calculations of the selected CDF functionals,
in Fig. 1 we show the density dependence of S4(ρ). It is
seen that all CDF models predict similar curves around and
lower than the saturation density ρ0, but the distinct deviation
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FIG. 1. The nuclear fourth-order symmetry energy S4 and its
potential part S4,pot and kinetic part S4,kin as functions of the baryonic
density ρ. The results are calculated with RHF functionals PKA1 and
PKO1, in comparison with RMF ones PKDD and TW99.

between the RHF and the RMF functionals occurs in the
supranuclear density region. While the fourth-order symmetry
energies in the RMF models increase monotonically with
respect to the density ρ, those in the RHF decrease beyond
ρ � ρ0, even being negative when ρ ∼ [0.2,0.5] fm−3, and
rise montonically again after reaching the minimum value.
The results are illustrated further by dividing the S4(ρ) into
its potential part S4,pot and kinetic part S4,kin, as shown in the
middle and right panels of Fig. 1, respectively. It is found that
the density dependence of S4,pot and S4,kin becomes stronger in
the RHF models than the RMF ones. Specifically, within the
RHF a clear reduction of S4,pot at ρ ∼ [0.1,0.5] fm−3 appears,
which actually dominates the trend of the total fourth-order
symmetry energy, leading to the values of S4(ρ) in RHF being
lower systematically than those in RMF.

To clarify the origin of the difference of S4,pot between
two kinds of CDF models, it is convenient to take the results
in Fig. 1(b) apart into their contributions from the Hartree
and Fock channels according to Eq. (10b), namely SD

4,pot and
SE

4,pot, as shown in Fig. 2(a). For convenience, only the results
from the RHF functional PKO1 and the RMF one TW99
are displayed, while the other functionals actually do not
change the analysis and the conclusion. It is seen that the
divergence of the density dependence of S4,pot results mainly
from the Hartree part SD

4,pot, which can be explained by
the differences in the magnitude of meson-nucleon coupling
constants and their density dependence between the RHF and
RMF functionals. In fact, due to the extra interaction brought
about by the Fock terms, the balance between the nuclear
attractions and the repulsions is changed, which sequentially
causes the difference in the coupling constants. Aside from
the contribution of Hartree terms, the contribution from the
Fock terms SE

4,pot also cannot be ignored: they give a strongly
suppressed contribution (maximum as � −4.7 MeV) to S4,pot

in a fairly broader density region. By separating SE
4,pot further

in terms of meson-nucleon coupling channels, as plotted in
Fig. 2(b), one can find that such an extra contribution from the
Fock diagrams is mainly due to the isoscalar coupling channels,
with a remarkably negative contribution from the ω-meson

FIG. 2. (a) The potential part of nuclear fourth-order symmetry
energy S4,pot is decomposed into the Hartree part SD

4,pot and the Fock
part SE

4,pot according to Eq. (10b), as functions of the baryonic density
ρ. The results are calculated with the RHF functional PKO1 (solid
lines), in comparison with the RMF one TW99 (dotted line). (b) The
Hartree part SD

4,pot and the contributions to SE
4,pot from the σ -, ω-, ρ-,

and π -meson coupling channels are shown in detail at low densities.

coupling channel compensated by a positive contribution from
the σ -meson one. Because the isovector meson-nucleon cou-
plings decrease rapidly with respect to the density, as the case
in present RHF functionals, the contributions to SE

4,pot from the
ρ and π mesons are relatively weak. The results demonstrate
again the importance of the isoscalar mesons via Fock diagram
to the symmetry energy and correspondingly the essential role
from the isospin-triplet components of the exchange potential
EDF [60].

Similarly to S4,pot, the kinetic part of nuclear fourth-order
symmetry energy S4,kin can be divided further according to
Eq. (10c), as shown in Fig. 3(a). In the RHF calculation,
S

M+p+D
4,kin exhibits stronger density dependence than that in

FIG. 3. (a) The kinetic part of nuclear fourth-order symmetry en-
ergy S4,kin is divided into various components according to Eq. (10c),
namely S

M+p+D
4,kin = SM

4,kin + S
p
4,kin + SD

4,kin and the Fock part SE
4,kin, as

functions of the baryonic density ρ. The results are calculated with the
RHF functional PKO1 (solid lines), in comparison with the RMF one
TW99 (dotted line). (b) The Hartree part SD

4,kin and the contributions to
SE

4,kin from the σ -, ω-, ρ-, and π -meson coupling channels are shown
in detail at low densities.
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TABLE I. Bulk properties of symmetric nuclear matter at saturation density ρ0 (in units of fm−3), i.e., the symmetry energy S2(ρ0), the
density slope of symmetry energy L (in unit of MeV), and the fourth-order symmetry energy S4(ρ0) (in units of MeV). S2,pot (or S4,pot) and S2,kin

(or S4,kin) correspond to the potential part and the kinetic part of S2(ρ0) [or S4(ρ0)], respectively. The results are calculated by using the RHF
functionals PKA1, PKO1, PKO2, and PKO3, as compared to those given by the RMF functionals PKDD, TW99, DD-ME1, and DD-ME2.

Model Interaction ρ0 S2(ρ0) S2,pot S2,kin S4(ρ0) S4,pot S4,kin L

RHF PKO1 0.152 34.370 30.661 3.709 0.522 − 0.726 1.248 97.7
PKO2 0.151 32.492 28.094 4.398 0.583 − 0.510 1.093 75.9
PKO3 0.153 32.987 29.717 3.270 0.473 − 0.872 1.345 83.0
PKA1 0.160 36.015 35.551 0.464 0.352 − 1.770 2.122 103.5

RMF DD-ME1 0.152 33.065 24.692 8.373 0.649 0.170 0.479 55.5
DD-ME2 0.152 32.295 24.036 8.259 0.651 0.169 0.482 51.2

TW99 0.153 32.767 24.774 7.993 0.661 0.167 0.494 55.3
PKDD 0.150 36.790 28.657 8.133 0.645 0.168 0.477 90.2

RMF when ρ � 0.2 fm−3, with a rapid growth and then a very
slow drop as the density increases. Such a deviation between
two functionals results from two aspects: for SM

4,kin + S
p
4,kin

the E∗ plays a dominate role, while for SD
4,kin the role of

the Dirac mass M∗ is partly involved, as seen in Eq. (6).
In fact, the starred quantity E∗ corresponds to the Landau
mass in the CDF theory if the momentum dependence of the
self-energy is left out. Therefore, it is the isospin dependence
of the effective mass, including both the Dirac mass and the
Landau mass, that accounts for the kinetic part of S4(ρ).
Furthermore, an extra contribution SE

4,kin from Fock diagrams
is found, which provides a relatively small and positive value
around the saturation density but an explicit suppression when
ρ � 0.2 fm−3. From Fig. 3(b), it is revealed that the density
dependence of SE

4,kin is dominantly ascribed to the isoscalar
ω-meson coupling channel. Hence, the significant role of
the Fock terms in the isospin properties of nuclear matter
is demonstrated in both potential and kinetic parts of the
fourth-order symmetry energy.

2. Nuclear fourth-order symmetry energy at saturation density

To compare with the constraints from other approaches,
it is useful to discuss the properties of nuclear fourth-order
symmetry energy S4(ρ) at saturation density ρ0. Table I shows
the values of symmetry energies and their potential and kinetic
components atρ0 with the different CDF functionals. It is worth
noting that the values of S4(ρ0) with the RHF functionals are
systematically smaller than those in the RMF ones. While
S4(ρ0) predicted in RMF is located around 0.65 MeV, it
is estimated to be about 0.35–0.58 MeV in RHF, in which
the functional PKA1, due to the inclusion of extra ρ-tensor
coupling, gives the smallest value of S4(ρ0) = 0.352 MeV.
Thus, it is expected that the involvement of the Fock terms in
the CDF theory reduces the fourth-order symmetry energy at
ρ0, and the results are still in agreement with those from the
density functional theory [38,42,43,45] and the chiral pion-
nucleon dynamics [40,46], i.e., in general less than 2 MeV, but
smaller in magnitude than the latest prediction by an extended
nuclear mass formula [41].

By dividing into the potential and kinetic part, as shown in
Table I, the reduction of S4(ρ0) in RHF can be explained by
the fact that, although the kinetic parts S4,kin are enhanced,

the potential parts S4,pot are sufficiently lowered compared
to RMF. As has been discussed and illustrated in Fig. 2(b),
for S4,pot(ρ0) the systematic deviation between two kinds of
CDF models is attributed to both the difference of the Hartree
part SD

4,pot and extra suppression from the Fock terms SE
4,pot,

specifically from the ω-meson coupling channel. Besides, for
the kinetic part S4,kin(ρ0), the RHF models predict values of
about 1.09–2.12 MeV, systematically larger than the selected
density dependent RMF results. After extracting further the
components of S4,kin(ρ0) according to Eq. (10c), as listed in
Table II, it is clarified that in RHF the increase of S4,kin(ρ0) at
the saturation density results considerably from the Fock terms
SE

4,kin, especially in the ω-meson coupling channel [see S
E,ω
4,kin

in Fig. 3(b)], since the contributions from the summation of
the rest parts, namely

S
M+p+D
4,kin = SM

4,kin + S
p
4,kin + SD

4,kin, (11)

are similar among all selected CDF models.
Recently, from the 12C(e,e′pN ) scattering experiments at

JLab, it is suggested that the protons and neutrons in a nucleus
can form strongly correlated nucleon pairs, with large relative
momentum, which are referred to as SRC pairs and regarded

TABLE II. Decomposition of the kinetic part of nuclear fourth-
order symmetry energy S4,kin at saturation density ρ0 according to
Eq. (10c), namely, the rest mass part SM

4,kin, the momentum part

S
p
4,kin, the Hartree part SD

4,kin, and their summation S
M+p+D
4,kin = SM

4,kin +
S

p
4,kin + SD

4,kin, as well as the Fock part SE
4,k . The results are calculated

with RHF functionals PKA1, PKO1, PKO2 and PKO3, and with RMF
ones PKDD, TW99, DD-ME1 and DD-ME2. All values are in units
of MeV.

Interaction SM
4,kin S

p
4,kin SD

4,kin S
M+p+D
4,kin SE

4,kin

PKO1 − 0.234 0.408 0.084 0.258 0.990
PKO2 − 0.647 0.455 0.332 0.140 0.953
PKO3 − 0.036 0.374 − 0.010 0.328 1.017
PKA1 1.667 0.116 − 1.174 0.609 1.513

DD-ME1 − 0.754 1.212 0.021 0.479
DD-ME2 − 0.698 1.215 − 0.035 0.482
TW99 − 0.507 1.233 − 0.232 0.494
PKDD − 0.685 1.203 − 0.041 0.477
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as a consequence of the nucleon-nucleon tensor force [56–58].
Later on, it was realized that these SRC pairs could have a
significant influence on the kinetic part of nuclear symmetry
energy [50,54,55] and its fourth-order term S4,kin as well [61].
By using the Fermi gas model with correlated high-momentum
neutron-proton pairs, a larger value 7.18 ± 2.52 MeV of
S4,kin(ρ0) with ρ0 = 0.16 fm−3 is obtained, in comparison
with � 0.45 MeV predicted by the free Fermi gas model [61].
Besides, in the calculation within the CDF theory, it is also
revealed that the inclusion of the Fock terms reduces sizably
the kinetic part of S2 at and above the saturation density [60],
which is regarded partly as the effect of the nuclear tensor force
[93]. Here in this work, we demonstrate further the effects
of the Fock terms on the kinetic part of S4, especially from
the isoscalar meson coupling channels, which correspondingly
leads to the enhancement of S4,kin(ρ0) in RHF systematically.

B. Effects of nuclear fourth-order symmetry energy
on neutron star properties

The study of the fourth-order symmetry energy allows
access to cold dense nuclear matter, such as that found in
a neutron star. In particular, when describing its cooling
and rotational properties, the theoretical predictions could be
affected essentially by the inclusion of S4 in the EoS [35–39].
Due to the extra contributions from the Fock terms in deciding
the density dependence of S4, the difference between RMF
and RHF in the calculations of neutron star properties will be
emphasized in the following discussions, namely in the proton
fraction, the core-crust transition, as well as the moment of
inertia utilized to describe pulsar glitches.

1. Proton fraction

The cooling rate of neutron stars could be enhanced ef-
ficiently through the DUrca process, i.e., n → p + e− + ν̄e

and p + e− → n + νe, leading the star to cool off rapidly by
emitting the thermal neutrinos [106,107]. The occurrence of
the DUrca process relies sensitively on the proton fraction
χp ≡ ρp/ρ of neutron star matter. For the description of
neutrino free neutron star matter with nucleons (neutrons and
protons) and leptons (electrons and muons), the β-equilibrium,
baryon density conservation, and charge neutrality conditions
are imposed here. The chemical potentials of nucleons and
leptons satisfy the equilibrium conditions, constrained by the
weak interacting reactions,

μλ = μn − μp, (12)

where λ = e−,μ−. The equations of motion for the leptons
are the free Dirac equations. Therefore, the chemical poten-
tials of leptons can be determined by the relativistic energy-
momentum relation at the Fermi momentum,

μλ =
√

m2
λ + (3π2ρχλ)2/3, (13)

where mλ denotes the lepton masses, me = 0.511 MeV and
mμ = 105.658 MeV. The lepton fractions χλ ≡ ρλ/ρ in neu-
tron star matter. When the chemical potential of electron μe

reaches the threshold of the muon mass, the lepton μ− will
appear.

FIG. 4. The proton fraction χp as a function of the baryonic
density ρ in neutron star matter [panels (a)–(d)], calculated from
Eq. (15), where E(ρ,δ) is taken as its exact values ( 1©, solid lines)
or approximated up to the fourth ( 2©, dashed lines) or the second
( 3©, dotted lines) order according to Eq. (7a). The results from the
RHF functionals PKA1 and PKO1 are displayed, in comparison
with the RMF ones PKDD and TW99. The horizontal dashed lines
give the threshold 14.8% for the occurrence of the DUrca process.
For the functionals TW99 and PKO1, the effects of the fourth-order
and the higher-order symmetry energies are illustrated in the panels
(e) and (f), respectively, by showing the divergence of the results with
different approximations to E(ρ,δ), labeled as 2©- 3© and 1©- 2©.

In order to extract the effects of symmetry energy on the
proton fraction χp, it is convenient to deduce the relation
between nucleon chemical potentials by the thermodynamical
relation, shown as

μn − μp = 2
∂E(ρ,δ)

∂δ
. (14)

Substituting the Eqs. (13) and (14) into Eq. (12), it is easily
found that the lepton fraction χλ is actually the function of
E(ρ,δ), and consequently the proton fraction χp is expressed
as

χp(ρ) = 1

3π2ρ

∑
λ

{[
2
∂E(ρ,δ)

∂δ

]2

− m2
λ

}3/2

, (15)

deduced from the charge neutrality condition χp = χe + χμ.
Hence, by taking the Taylor series of expansion for E(ρ,δ) into
account, given in Eq. (7a), and making an appropriate cutoff
of n, the influence of 2n-order symmetry energy S2n on the
proton fraction can be explored quantitatively.

Figure 4 shows the density dependence of the proton
fraction χp in neutron star matter. Compared with the results
using the exact E(ρ,δ), approximation of E(ρ,δ) up to δ2

order (dotted lines) would generate appreciable errors which
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are relatively more distinct in RMF calculations [see panels
(a), (c), and (e)] than in RHF [see panels (b), (d), and (f)]. It
is seen that in RMF the density dependence of χp is clearly
underestimated with E(ρ,δ) up to δ2 order. The error is then
partly diminished by introducing the δ4-order contribution
into E(ρ,δ), namely taking the effect from the fourth-order
symmetry energy S4(ρ) into account. However, with the
approximation of E(ρ,δ) up to δ2 order, overestimation of the
proton fraction around the density region ρ ∼ [0.2,0.5] fm−3

is observed in the RHF predictions, which is then almost
compensated by including the S4(ρ) induced contribution in
E(ρ,δ), as seen in Figs. 4(b) and 4(d) with dashed lines. In
fact, such a systematical distinction between RMF and RHF
calculations is correlated intimately with their divergence of
the symmetry energy. Specifically, it is seen that the density
dependence of the contribution of S4 to the proton fraction, as
plotted by the solid lines in Figs. 4(e) and 4(f), exhibits the
same trend as those of S4(ρ) shown in Fig. 1(a). In addition,
the negative contribution of S4 to χp in the density range
of ρ ∼ [0.2,0.5] fm−3 within the RHF functional PKO1 is
ascribed mainly to the Fock terms, which consequently change
the role of the fourth-order symmetry energy in deciding the
matter distribution in neutron stars.

2. Core-crust transition density

The stability of matter in neutron stars is found to be
sensitive to the density dependence of the symmetry energy
as well, which decides the phase transition between nuclei
and uniform matter and defines the core-crust interface of
neutron stars [20,108]. The baryonic number density of two
coexisting phases corresponds to the so-called core-crust
transition density ρt that separates the liquid core from the
inner crust in neutron stars. To estimate ρt , several dynamical
methods, such as the random phase approximation (RPA),
are used as a realistic treatment to determine the stabil-
ity of the uniform ground state against cluster formation
[37,109–112]. A simplification of the dynamical method,
namely the thermodynamical method, is obtained at long-
wavelength limit when the Coulomb interaction is neglected
[37]. With this approximation, the core-crust transition prop-
erties of neutron stars are studied using a variety of nuclear
effective models and microscopic approaches [20,39,111,113].
It has been found that the dynamical method predicts a slightly
smaller transition density, about 0.005–0.015 fm−3 lower, than
the thermodynamical calculation [111]. Here the thermody-
namical method is adopted for simplicity, since we mainly
focus on the role of the fourth-order symmetry energy in the
core-crust transition properties and the relevant contributions
from the Fock terms. Thus, the stability of uniform npe matter
is required to obey the following inequalities, namely the
intrinsic stability condition of any single phase:

−
(

∂P

∂v

)
μnp

> 0, (16a)

−
(

∂μnp

∂qc

)
v

> 0, (16b)

FIG. 5. The thermodynamical potential Vther as a function of the
baryonic density ρ in neutron star matter, calculated from Eq. (17),
where E(ρ,δ) is taken as its exact values (solid lines) or approximated
up to the fourth (dashed lines) or the second order (dotted lines)
according to Eq. (7a). The results are from the RHF functional PKO1,
compared with the RMF one TW99.

where P is the total pressure of neutron star matter, v =
1/ρ denotes the average volume per baryon, μnp = μn − μp

represents the difference between neutron and proton chemical
potentials, andqc corresponds to the average charge per baryon.
Here the finite size effects due to surface and Coulomb energies
of nuclei are ignored. In addition, by introducing a density
dependent thermodynamical potential Vther(ρ), the stability
condition of Eq. (16a) can be equivalently expressed as [39]

Vther(ρ) ≡ 2ρ
∂E(ρ,δ)

∂ρ
+ ρ2 ∂2E(ρ,δ)

∂ρ2

−
[
ρ

∂2E(ρ,δ)

∂ρ∂δ

]2/
∂2E(ρ,δ)

∂δ2
> 0, (17)

which will be violated when the baryonic density decreases
and reaches a threshold with Vther(ρt ) = 0, subsequently deter-
mining the critical density ρt for the core-crust transition. In
the following discussion, similar to the analysis for the proton
fraction, the influence of various orders of symmetry energy
on the core-crust transition, by adopting the corresponding
approximation for E(ρ,δ), can be investigated quantitatively
as well.

The density dependence of the thermodynamical potential
Vther(ρ) is shown in Fig. 5, within the RHF functional PKO1
and the RMF one TW99 for comparison. Explicitly, the higher
the S2n terms within Eq. (7a) that the binding energy per
nucleon E(ρ,δ) includes, the more enhanced the thermody-
namical potential Vther(ρ) will be. By analyzing further the
corresponding contributions from the three terms of Vther(ρ)
as expressed in the right-hand side (rhs) of Eq. (17), it is
then found that the isospin dependence of E(ρ,δ), namely
the third term in Eq. (17), dominates such an enhancement
of Vther(ρ) rather than its density dependence. Hence, the
inclusion of these contributions from the high-order symmetry
energy, such as from S4(ρ), results in the reduction of the
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TABLE III. The density slope of symmetry energy L (in units of MeV), the core-crust transition density ρt (in units of fm−3), and the
corresponding values of the proton fraction χp and pressure Pt (in units of MeV fm−3) at ρt in neutron stars with the various CDF functionals.
The results are obtained by adopting the different approximations to the thermodynamical potential Eq. (17), namely E(ρ,δ) is taken as its
exact values (Exact) or approximated up to the fourth (Quartic) or the second (Quadratic) order according to Eq. (7a).

Interaction L ρt χp Pt

Exact Quartic Quadratic Exact Quartic Quadratic Exact Quartic Quadratic

PKO1 97.7 0.0634 0.0750 0.0784 0.0219 0.0263 0.0276 0.3023 0.4983 0.5688
PKO2 75.9 0.0745 0.0805 0.0824 0.0296 0.0316 0.0322 0.3449 0.4371 0.4694
PKO3 83.0 0.0722 0.0796 0.0816 0.0278 0.0302 0.0308 0.3520 0.4616 0.4958
PKA1 103.5 0.0550 0.0670 0.0701 0.0235 0.0277 0.0288 0.2567 0.4083 0.4553

DD-ME1 55.5 0.0843 0.0917 0.0939 0.0383 0.0407 0.0414 0.6040 0.7230 0.7616
DD-ME2 51.2 0.0869 0.0932 0.0951 0.0388 0.0406 0.0411 0.5931 0.6863 0.7158
TW99 55.3 0.0851 0.0909 0.0927 0.0368 0.0387 0.0393 0.5243 0.6215 0.6543
PKDD 90.2 0.0755 0.0866 0.0902 0.0332 0.0391 0.0410 0.6142 0.8836 0.9869

core-crust transition density ρt . Moreover, in comparison with
the curves from TW99, a systematical enhancement of the
density dependence of Vther(ρ) is obtained within the RHF
functional PKO1, no matter how the approximation on E(ρ,δ)
is taken. As has been revealed, because of the extra contribu-
tions from the Fock terms, strong density dependence of the
symmetry energy is predicted by the RHF calculations [60,92],
which naturally plays the role in the density dependence of
Vther(ρ) via the first and the second terms in Eq. (17). As a
result, it is expected that the inclusion of the Fock diagrams in
the CDF theory reduces the core-crust transition densities ρt .

In Table III, the core-crust transition densities ρt of neutron
stars with the different CDF functionals are given. The results
are obtained by adopting the different approximations to the
thermodynamical potential: namely E(ρ,δ) is taken as its exact
values or approximated up to the fourth or to the second
order according to Eq. (7a). In agreement with the analysis of
Vther(ρ), it is revealed that the core-crust transition densities ρt

decrease monotonically for all models with the improvement
of precision to describe the EoS, as do the corresponding
proton fraction χp and the pressures Pt at the density ρt .
The same trend is found also in the recent studies from the
other density functional approaches, either nonrelativistic or
relativistic [38,39,43]. Therefore, it is claimed that the effects
of the high-order symmetry energies are indispensable and the
exact treatment of E(ρ,δ) is necessary in order to describe
the core-crust transition properties appropriately. Furthermore,
it should be noticed that the values of ρt , χp, and Pt given
by RHF functionals are systematically smaller than those
from the selected density dependent RMF; for instance, the
exact values of ρt ∼ [0.055,0.075] fm−3 within RHF while
those of ρt ∼ [0.076,0.087] fm−3 within the selected density
dependent RMF, illustrating the essential roles of the Fock
terms in the neutron star properties not only in the inner region
but around the interface between core and crust.

As has been discussed, the density dependence of Vther(ρ)
is enhanced in the RHF calculations because of the extra con-
tributions to the symmetry energies from the Fock diagrams,
leading correspondingly to the reduction of the core-crust
transition densities ρt . While the density dependence of the
symmetry energy is mainly reflected by its density slope

parameter L, it is then worth investigating the relationship
between ρt of neutron stars and the density slope L in nuclear
matter, as illustrated in Fig. 6.

Similarly to the previous discussion, three sets of ρt are
depicted respectively by adopting the different approximations
to the thermodynamical potential Vther(ρ). For comparison,
those from the Gogny density functionals are given as well
[43]. Systematically speaking, the RHF models predict larger
values of L compared to the Gogny and selected density
dependent RMF ones, due to the effects of Fock terms [60].

FIG. 6. Correlations between the core-crust transition densities
ρt of neutron stars and the density slope parameters L of symmetry
energies within the selected CDF functionals. The results within the
Gogny density functionals taken from Ref. [43] are plotted as well.
From Table III, the transition densities ρt are taken as its exact values
(squares), approximations up to the fourth (empty stars) or the second
order (empty circles),. With the exact ones from the eight selected
CDF models (solid squares), a linear fitting is given by the black
solid line. The yellow (gray) region depicts the constraint on the
density slope parameter L = 58.7 ± 28.1 MeV from Ref. [33], which
determines further the constraint on the core-crust transition density
with the thermodynamical method, namely ρt ∼ [0.069,0.098] fm−3,
based on the linear anticorrelation between ρt and L, as marked by
the shadowed area.
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Noted that with RMF models which provide large value of
L, such as several nonlinear RMF functionals [110], it is
possible to provide smaller ρt . Thus, the small values for ρt

do not seem exclusively a consequence of the Fock diagrams,
but are regarded as a result of the models just having large
density slopes L. Nevertheless, a linear anticorrelation is found
approximately for the set of exact ρt (squares), namely, the
core-crust transition density decreases with the increasing
density slope L, which is also satisfied for the cases where
ρt are approximated (stars or circles). Notice that such a
ρt -L correlation is found in several other studies as well
[16,37,43,110,111,114,115].

Utilizing the least-square method, it is then convenient to
linearly fit these three sets of ρt -L correlations, namely ρt =
aL + b, where a is in units of 10−4 fm−3 MeV−1, b in fm−3,
and L in MeV. To exhibit the linear anticorrelation in the CDF
results, the fitting procedure is carried out only with the selected
RMF and RHF functionals, dropping those with Gogny. Fi-
nally, there are a = −5.13,−4.02,−3.73, b = 0.11, and their
Pearson correlation coefficients r = −0.94,−0.89,−0.86, re-
spectively. Recently, the review study of the EoS for super-
novae and compact stars collectively analyzed the impact of the
nuclear symmetry energy and gave the constraint on the density
slope parameter as L = 58.7 ± 28.1 MeV [33]. Thus, proving
the linear anticorrelation between ρt and L in conjunction with
the empirical information on L, the constraint on the core-crust
transition density is evaluated as ρt ∼ [0.069,0.098] fm−3 (the
shaded region in Fig. 6) if the exact value of E(ρ,δ) is used in
determining the transition density ρt with the thermodynamical
method. There still exists a relatively large uncertainty of ρt ,
which may generate appreciable influence on the structure of
neutron stars, and is specifically crucial for understanding the
glitch phenomenon when they are rotating.

3. Fraction of crustal moment of inertia

As has been observed in many pulsars, the glitch phe-
nomenon, i.e., the abrupt spin-up in the rotational frequency,
is well believed to be the result of sudden transfers of angular
momentum between the neutron superfluid permeating the
inner crust and the rest of the star [108,116–119]. It is found
that the rate of angular momentum transfer can be related to
the fraction of the moment of inertia of the star which resides
in the crust, as denoted by �I/I [120]. Based on the slowly
rotating assumptions for pulsars in the framework of general
relativity [121], the fraction of crustal moment of inertia is well
approximated by [30,108]

�I

I
	 8πPtR

4

3GM2

(
MR2

I
− 2β

)
e−4.8�R/R, (18)

where β = GM/(Rc2) is the neutron star compactness param-
eter and �R/R denotes the crust thickness ratio. To compute
the neutron star mass M , radius R, and crust thickness �R
on the rhs of Eq. (18), the EoSs of neutron star matter under
β-equilibrium as discussed above are used at high densities
(neutron star core region), while BPS [122] and BBP [123]
models are adopted to provide the EoS at low densities (neutron
star crust region). The EoS of neutron star core and crust is
matched by the core-crust transition pressure discussed before.

FIG. 7. The fraction of crustal moment of inertia �I/I as a
function of the neutron star mass (in units of the solar mass M
).
The results are calculated with the RHF functional PKO1 (lines
with squares) and the RMF one TW99 (lines with triangles), by
taking different sets of the core-crust transition pressure Pt from
Table III. Two horizontal lines represent the constraints on �I/I ,
namely �I/I � 0.016 [125] or �I/I � 0.07 [126].

The neutron star structure is then obtained by solving the
stellar hydrostatic equilibrium equations, namely the Tolman-
Oppenheimer-Volkov equations. Besides, the total moment of
inertia of the star I on the rhs of Eq. (18) is estimated by [124]

I 	 (0.237 ± 0.008)MR2(1 + 2.84β + 18.9β4). (19)

As seen in Eq. (18),�I/I depends primarily on the stellar
mass, radius, and the pressure Pt at the core-crust transition
boundary, and scales as PtR

4M−2 [30,120].
Figure 7 shows the stellar mass dependence of the fraction

of crustal moment of inertia of neutron stars based on different
considerations of the core-crust transition pressure taken from
Table III. It is revealed that, in both RHF and RMF results,
�I/I decreases monotonically as the stellar mass goes up.
When E(ρ,δ) reserves more of the high-order components of
S2n, namely it approaches gradually to its precise value, the
pressure Pt at the core-crust transition density will be brought
down, as listed in Table III. Subsequently, the suppression of
the values of �I/I occurs, mainly because of the reduction
of transition pressure according to Eq. (18), which becomes
more remarkable for PKO1 since the pressure curves in RHF
models stiffen further due to the contributions from the Fock
terms. Although the values of Pt within RHF are smaller
systematically than those from the selected density dependent
RMF, as shown in Table III, it is interesting to see that the
curves of �I/I with PKO1 and TW99 approach each other
in the case of exact calculations. In fact, the predicted radii of
neutron stars in RHF are generally larger than those in density
dependent RMF functionals in a wide range of stellar mass
[91,92]. As a result, a counterbalance between the suppressed
roles of the Fock terms in Pt and the enlarged effects of the Fock
terms on the radius R takes place, making the exact calculations
of �I/I less model dependent.
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TABLE IV. The maximum allowed neutron star masses within
both the RMF and RHF functionals constrained by two sets of
critera from the measured glitches in Vela pulsar [125], based on
the different consideration of the core-crust transition pressure taken
from Table III.

Interaction M/M
 (�I/I = 0.016) M/M
 (�I/I = 0.07)

Exact Quartic Quadratic Exact Quartic Quadratic

PKO1 2.25 2.43 2.45 1.20 1.53 1.62
PKO2 2.28 2.39 2.41 1.20 1.36 1.41
PKO3 2.35 2.45 2.47 1.24 1.44 1.49
PKA1 2.13 2.35 2.39 1.07 1.36 1.44

DD-ME1 2.43 2.45 2.45 1.45 1.59 1.62
DD-ME2 2.46 2.49 2.49 1.45 1.56 1.59
TW99 2.01 2.05 2.06 1.19 1.29 1.31
PKDD 2.33 2.33 2.33 1.55 1.78 1.85

Finally, we discuss more about the observational constraints
on the fraction of crustal moment of inertia. The standard
model for pulsar glitches holds that they are due to the neutron
superfluid in the star’s crust. In this case, the observed glitch
rates and magnitudes for the Vela pulsar lead to the following
constraint [125]:

�I/I � 0.016. (20)

To satisfy this criterion, the maximum allowed neutron star
masses are found to be larger than 2M
 for all selected
functionals, as shown in Fig. 7 and summarized in Table IV;
they are in reasonable agreement with the measured large
pulsar masses for J1614−2230 and J0348+0432 [127,128].
Recently, it was argued that, due to entrainment of superfluid
neutrons in the crust [117,125], one would have to enlarge the
inferred lower limit to �I/I as

�I/I � 0.07, (21)

in order to explain the measured glitches in Vela pulsar.
For comparison, the maximum allowed neutron star masses
in agreement with this constraint are listed in Table IV. It
is seen that only very low mass neutron stars could satisfy
this criterion, with the mass always lower than 2M
. It was
thought that this new constraint would call into question the
standard model for glitches [30,117,118,125], and the core-
crust coupling during glitches would be necessary as one of
the possible solutions [129,130]. However, by taking pairing
into account explicitly in the calculations of the effects of
band structure on the neutron superfluid density in the crust of
neutron stars, it is argued that the standard models of glitches
based on neutron superfluidity in the crust cannot be ruled
out yet [131]. Nevertheless, the physics in pulsar glitches
is still an open problem and needs to be explored further,
while in this work attention is paid to the effects of nuclear
high-order symmetry energies and the crucial influence of the
Fock diagrams on the glitches related properties.

IV. SUMMARY

In this paper, by adopting the density dependent meson-
nucleon coupling formalism, the density dependence of the

nuclear fourth-order symmetry energy S4(ρ) and its properties
at saturation density ρ0 have been studied within the CDF
theory. The calculations are performed by using the RHF
functionals PKA1, PKO1, PKO2, and PKO3, in comparison
with the RMF functionals PKDD, TW99, DD-ME1, and DD-
ME2. It is found that the fourth-order symmetry energies
S4(ρ) in RHF are considerably smaller than those in RMF
at both saturation and supranuclear densities. It is illustrated
then by analyzing the contributions from various meson-
nucleon coupling channels to the potential and kinetic parts
of S4(ρ). The studies clarify the important role of the Fock
diagrams in determining the fourth-order symmetry energy,
generally from three aspects. First, with the inclusion of
the Fock terms, the density dependence and the magnitude
of meson-nucleon coupling constants alternate, leading to
divergent contribution of the Hartree terms of potential EDFs.
Second, extra contributions are introduced by the Fock terms
of potential EDFs, which is proved to be dominated by the
isoscalar meson coupling channels. Third, the deviation in the
potential EDFs affects the nucleon self-energies and changes
consequently the kinetic EDFs via Eq. (6). Quantitatively,
the values of S4(ρ0) at saturation density are estimated to
be about 0.35–0.58 MeV within selected RHF functionals,
consistent with several model predictions [38,40,42,43,45,46],
but smaller in magnitude than the latest one by an extended nu-
clear mass formula [41]. Besides, the RHF models predict the
values of the kinetic fourth-order symmetry energy S4,kin(ρ0)
about 1.09–2.12 MeV, systematically larger than the density
dependent RMF results, which could be regarded partly as the
effect of the nuclear tensor force embedded naturally in the
exchange diagrams. Note that the comparison between RHF
and RMF in this work is limited only to the density dependent
meson-nucleon coupling version of the CDF approaches, so the
conclusions may not be fulfilled by other CDF versions such
as the nonlinear or point-coupling types of CDF approaches.

Furthermore, the effects of S4(ρ) on the neutron star
properties have been investigated in detail, and the differences
between RMF and RHF calculations are illustrated. To extract
the contributions from S4 and higher-order symmetry ener-
gies S2n, the calculations are performed by taking the exact
values of the equations of state or cutting them off up to the
corresponding order in a Taylor series of expansion. Because
of the suppressed roles in S4(ρ) brought about by the Fock
diagrams, the fourth-order term S4(ρ)δ4 of the EoS within
the RHF functionals actually contributes a negative value to
determine the proton fraction χp in neutron star matter, which
occurs in the density range of ρ ∼ [0.2,0.5] fm−3. Besides,
the fourth- and higher-order symmetry energies affect the
core-crust transition properties as well, namely, they reduce the
core-crust transition density ρt and the corresponding proton
fraction as well as the transition pressure. With the inclusion
of the Fock terms, the density dependence of the thermody-
namical potential Vther becomes stronger as compared to the
cases of the selected density dependent RMF. As a result, the
core-crust transition densities ρt and the corresponding values
of χp and Pt are reduced further in RHF, demonstrating the
essential roles of the Fock terms in the neutron star properties
not only in the inner region but around the core-crust interface.
In addition, a linear anticorrelation between the core-crust
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transition density ρt and the density slope of symmetry energy
L is found in the CDF calculations in combination with the
empirical information on L, which is then used to constrain
the core-crust transition density to ρt ∼ [0.069,0.098] fm−3.
Note that a simplified thermodynamical method has been used
in this work to determine the properties of core-crust boundary.
A more realistic dynamical method is then appropriate along
this line. Finally, it is also shown that the fraction of crustal
moment of inertia of neutron stars is reduced by including the
contributions of the high-order symmetry energies, consistent
with the behavior found in the transition pressure Pt .

In conclusion, the effects of the Fock terms in CDF ap-
proaches on nuclear isospin properties are demonstrated again
in this work; they influence the nuclear fourth-order symmetry
energy S4 drastically, while S4 is elucidated further to play
a considerable role in understanding the physics of neutron
stars, such as in the cooling mechanism and pulsar glitches.
Hence, the improvement in constraining the isospin and density

dependence of the nuclear EoS with upcoming astrophysical
observations and terrestrial experiments will be of utmost
importance to interpret appropriately these topics with extreme
physical conditions. The studies of these topics within a
meson exchange picture of nuclear force, in particular with the
inclusion of the Fock diagrams, are meaningful as well, for
instance to answer what the role of the tensor force is. It is
then expected that the RHF density functional will be improved
effectively withprecise constraints on its isospin and density
related properties.
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