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With the inclusion of the isovector scalar channel in the meson-nucleon couplings, taking DD-MEδ as an effective interaction, the
moments of inertia of neutron stars possessing various stellar masses are studied within the density dependent relativistic mean
field (RMF) theory. The isovector scalar channel contributes to the softening of the neutron-star matter equation of state (EOS)
and therefore the reduction of the maximum mass and radius of neutron stars. Smaller values of the total moment of inertia I
and the crustal moment of inertia ∆I are then obtained in DD-MEδ via numerical procedure in comparison with those in other
selected RMF functionals. In addition, the involvement of the isovector scalar channel lowers the thickness of the neutron star
crust and its mass fraction as well. The sensitivity to both the crustal mass and stellar radius causes the crustal moment of inertia
to be more obviously reduced than the total one, eventually leading to a suppression on the fraction of crustal moment of inertia
∆I/I in DD-MEδ. The results indicate the crustal moment of inertia as a more sensitive probe of the neutron-star matter EOS than
the total one, and demonstrate that the isovector scalar meson-nucleon couplings in the RMF theory could exert influence over the
physics of pulsar glitches.
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1 Introduction

As the natural laboratories in the universe for nuclear and
particle physics, neutron stars [1] have generated much ef-
fort concentrated on exploring the equation of state of bary-
onic matter at low temperature and high density [2]. Specifi-
cally, the observed maximum mass of neutron stars produces
a strong constraint on the behavior of EOS at supranuclear
density. Besides, as a rotating object its moment of inertia
which is one of the crucial bulk properties of neutron stars
can be measured in a few years from spin-orbit coupling in
double pulsar systems [3, 4]. Such a measurement of neutron
star moment of inertia would delimit EOS significantly [5]
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and be used to distinguish neutron stars from quark stars [6].
Thus, precise and massive modern astronomical observations
of the moments of inertia, reflecting mass distribution in neu-
tron stars interior, would provide a powerful probe of their
internal structure and of the EOS.

Furthermore, the moment of inertia that resides in the crust
of neutron stars, the region between the surface and the phase
transition boundary separating uniform matter and matter
containing nuclei [7], plays an important role in understand-
ing the mechanism of pulsar glitches. The abrupt increase
of neutron star rotational frequency, namely the glitches, are
well believed to be the result of sudden transfers of angular
momentum between the neutron superfluid permeating the in-
ner crust and the rest of the star [7-11]. Based on the astro-
nomical observation and analysis [12, 13], several theoretical
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studies contributed to understand its mechanism [8-11] and
these studies were compared to the glitch activities of Vela
pulsar [14]. Recently, the effects of entrainment of super-
fluid neutrons in the crust were investigated and an serious
uncertainty was found in constraining the fraction of crustal
moment of inertia [10, 11, 15-18]. Assuming the neutron star
is rotating slowly, the fractional moment of inertia could be
related to the star radius and the pressure Pt at core-crust tran-
sition density ρt [7]. At the same time a correlation between
ρt and the density slope of nuclear symmetry energy L was
found in several studies [19-24].

During the past decades, the covariant density functional
(CDF) theory has proved to be very successful in describ-
ing the nuclear structure, nuclear excitation and decay modes
[25-49]. As for nuclear matter, the static as well as the ro-
tating neutron star properties have been studied based on the
CDF theory [50-66]. At present, the relativistic mean field
(RMF) approach, as a most popular version of CDF theory,
has been extended to include the isovector scalar channel in
the meson-nucleon couplings, i.e., δ meson [56, 67-70].

Indeed, δ meson exchange is an essential ingredient of all
nucleon-nucleon realistic potentials in the QHD scheme [67]
and the inclusion of δ meson was also suggested in a rela-
tivistic Brueckner theory [71-73]. When the δmeson is intro-
duced, the proton Dirac mass becomes larger than the neutron
one in neutron-rich matter with increasing density [57,61,67].
Such an effective-mass splitting is then treated as an impor-
tant factor in the stability of drip-line nuclei [73] and would
affect the nucleon transport properties in heavy ion collisions
[74,75]. Besides, the contribution from the isovector scalar δ
meson within the RMF model becomes substantial for the nu-
clear matter with large isospin asymmetry, strongly alternat-
ing the density dependence of symmetry energy [56-58, 61],
which then may exert a dramatic impact on the description
of neutron star properties. In this work, we will focus on the
influence of the isovector scalar coupling channel in the RMF
theory on the moments of inertia of neutron stars, including
both bulk and crustal ones as well as their ratio, in connection
with the physics of pulsar glitches.

2 Theoretical framework

The theoretical framework of the RMF approach with the
isovector scalar meson-nulceon coupling has been well dis-
cussed in the literature. The interested reader is referred to
refs. [56, 58, 61, 69] for more details. Starting from the
effective Lagrangian density with the inclusion of isovector
scalar δ mesons, the energy density and the pressure for nu-
clear matter is obtained from the energy-momentum tensor.
Then the EOS used in neutron star core region are obtained

under β-equilibrium condition for homogeneous neutron star
matter (neutrons, protons, electrons and muons). While the
neutron star crust primarily consists of inhomogeneous nucle-
onic matter, BPS [76] and BBP [77] models are adopted for
proper description of the EOS at the crust region instead of
RMF models. For simplicity, the possible degrees of freedom
beyond nucleons, such as hyperons and quarks, are not con-
sidered inside the neutron stars. Under the Hartree approx-
imation, the isovector scalar coupling channel itself leads to
a positive contribution to the energy density and a negative
contribution to the pressure. Moreover, the occurrence of δ
mesons suppresses the kinetic and the isoscalar scalar σ po-
tential energies resulting from the alternated effective mass,
leading to the EOS of nuclear matter softened considerably.

Given the EOS, the stellar structure could be determined
by the Tolman-Oppenheimer-Volkov (TOV) equations and
the moment of inertia of neutron stars based on the slowly
rotating assumptions are defined in the framework of general
relativity [7, 78]:

dI
dr
= −2c2

3G
r3ω(r)

d j(r)
dr
, (1)

where j(r) = e−(v(r)+λ(r))/2, with the metric functions ν(r) and
λ(r) satisfying

dv(r)
dr
= 2G

M(r) + 4πr3 p(r)/c2

r(r − 2GM(r)c2)
, (2)

e−λ(r) = 1 − 2GM(r)
rc2 . (3)

The rotational drag ω(r) is solved from the equation:

d
dr

(
r4 j(r)

dω(r)
dr

)
= −4r3ω(r)

d j(r)
dr
, (4)

with the boundary conditions required by the continuity at the
stellar surface:

ω(R) = 1 − 2GI
R3c2 , j(R) = 1. (5)

Starting from a constant trial value of ω and dω/dr = 0 at
r = 0, the stellar profile of moment of inertia can therefore
be numerically obtained by solving the equations above iter-
atively together with the TOV equations.

To further calculate the crustal moment of inertia of neu-
tron stars, the stability between nuclei and uniform matter in
neutron stars that defines the core-crust interface should be
discussed. In general, dynamical method is used to estimate
the instability region of neutron star matter at β equilibrium as
a realistic treatment [19,21,79,80]. With the inclusion of the
density gradient and Coulomb terms, the dynamical method
takes into account the finite size effects, which could enhance
slightly the stability of the uniform neutron star matter and
correspondingly reduce the core-crust transition density ρt by
about 0.005-0.015 fm−3 [19, 79]. As a simplification of the
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dynamical one by ignoring the finite size effects, the ther-
modynamical method has been adopted in the discussions
with a variety of nuclear effective models and microscopic
approaches [21,81,82]. Since we mainly focus on the effects
of isovector scalar channel, the thermodynamical method is
adopted here. A more realistic dynamical treatment will just
lead to a systematical shift of ρt for the selected RMF func-
tionals and does not change the following conclusion about
the role of δ meson. Thus, one can introduce a quantity
Vther,

Vther = 2ρ
∂εb

∂ρ
+ ρ2 ∂

2εb

∂ρ2 − ρ
2
(
∂2εb

∂ρ∂χp

)2/(∂2εb

∂χ2
p

)
, (6)

where εb is the binding energy per nucleon, χp = ρp/ρ the
proton fraction. The intrinsic stability condition is violated at
the core-crust transition density ρt where Vther(ρt) = 0.

3 Results and discussion

To illustrate how the isovector scalar meson δ affects the EOS
for the nuclear matter, Figure 1 shows the pressure of neutron
star matter calculated by the functional DD-MEδ as a func-
tion of the baryonic density ρb. The results with the RMF
functionals TW99 [83], DD-ME2 [84] and PKDD [85], in
which the δmeson-nucleon coupling are not included, are in-
cluded for comparison. It is seen that DD-ME2 provides the
stiffest EOS among all functionals, while DD-MEδ with the
isovector scalar channel obtains the softest EOS.

A stiffer EOS at high densities would provide stronger
pressure to sustain the star from collapsing, which in turn
leads to a lager maximum mass of neutron stars, as seen in
Figure 2(a) and the detailed mass-radius relation in ref. [61].
Figure 2(b) displays the neutron star radius as a function of
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Figure 1 (Color online) The pressure of neutron star matter as a function
of the baryonic density. The insert figure displays the pressure at low density
where the points on the line indicate the position of the core-crust transition
density. The results are calculated by the RMF functionals without the δme-
son coupling, namely TW99, DD-ME2 and PKDD, and the one DD-MEδ
with the δ coupling.
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Figure 2 (Color online) Mass, radius and moment of inertia of neutron
stars as a function of stellar mass calculated by the selected RMF function-
als. Open circles indicate the predicted maximum mass of neutron stars.

the stellar mass. Because of the effects on the nucleon effec-
tive mass and the isoscalar scalar σ field, DD-MEδ provides
the softest EOS among the selected functionals, correspond-
ingly the smallest values of the radius prediction.

It is acknowledged that the radius of the neutron star is
sensitive to the density dependence of the symmetry energy.
In general, a larger value of the slope parameter L implies a
stiffer EOS and, hence, a less compact and a more extended
neutron star. The correlation between the radius of a 1.4 M⊙
neutron star R1.4 and the density slope L at the saturation den-
sity has been illustrated [86]. Here, the values of the slope L
and the radius of 1.4 M⊙ neutron stars with the selected RMF
functionals are listed in Table 1. According to previous stud-
ies (e.g. see ref. [61]), PKDD provides the strongest density
dependence of symmetry energy around the saturation den-
sity and gives, therefore, the largest radius R1.4 compared to
the other functionals. However, R1.4 cannot be uniquely con-
strained by the symmetry energy but also extremely sensi-
tive to the equation of state at high density [87]. From Ta-
ble 1, DD-MEδ provides larger value of L than DD-ME2,
but shows the smaller value of R1.4, demonstrating clearly the
crucial role of the stiffness of EOS at high density to the star
radius.

Figure 3 displays the radial dependence of mass distribu-
tion for 1.4 M⊙ and 1.8 M⊙ neutron stars. Note that due to
the low core-crust transition density as shown in Table 1, in
the PKDD case, there is an abrupt increase of dM(r)/dr at the
core-crust transition boundary in order to satisfy the continu-
ity of pressure in the star. With softened EOS, the density of
neutron star matter with DD-MEδ in the core is enhanced to
provide the pressure needed against collapse. Therefore, the
neutron star is made to be more compact for a given stellar
mass, consequently the crustal thickness narrower as high-
lighted by the shaded area in Figure 3. Additionally, such
compactness of DD-MEδ is found to be strengthened as the
stellar mass increases.
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Table 1 The density slope parameter of the symmetry energy L, the radius
R1.4 and the central density ρ1.4 for 1.4 M⊙ neutron stars, the density ρt and
pressure Pt at the core-crust transition boundary calculated by the selected
RMF functionals

Interaction L (MeV) R1.4 (km) ρ1.4 (fm−3) ρt (fm−3) Pt (MeV fm−3)

DD-MEδ 52.58 12.013 0.52 0.086 0.537

DD-ME2 51.21 13.27 0.34 0.087 0.593

TW99 55.31 12.361 0.47 0.085 0.524

PKDD 90.25 13.685 0.35 0.075 0.614
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Figure 3 (Color online) The radial dependence of mass distribution
dM(r)

dr = 4πr2ρ(r) in 1.4 M⊙ and 1.8 M⊙ neutron stars. The crust region
of neutron star is shown in the shaded area. Note that the scale on the right
side of the gray vertical line is 1 km rather than 2 km.

Aside from the stellar mass, the moment of inertia of neu-
tron stars also depends sensitively on the star radius, approx-
imately proportional to R2. Hence, the properties of neutron
star radius and mass reflect the nature of neutron star’s mo-
ment of inertia to a certain extent. Naturally, as seen in Fig-
ure 2(c), DD-MEδ provides the smallest prediction of the mo-
ment of inertia, due to the smallest radius displayed in Fig-
ure 2(b).

Figure 4 displays the moment of inertia scaled by MR2 as
a function of the stellar mass-radius ratio M/R. It has been
suggested that there appears to be a relatively unique relation
between I/MR2 and M/R for mass greater than 1.0 M⊙ [5],
unless the EOS has an appreciable degree of softening, possi-
bly introduced by hyperons, Bose condensates or self-bound
strange quark matter, which is then expressed as:

I ≃ (0.237 ± 0.008)MR2(1 + 2.84β + 18.9β4), (7)

where β = GM/(Rc2) is the neutron star compactness param-
eter. All the results of the selected RMF functionals are found
to be in good agreement with the approximate relation.

Once the critical density ρt of core-crust transition is de-
termined by the thermodynamical condition Vther(ρt) = 0, as
seen by the points in the inserted plot of Figure 1, the crustal
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Figure 4 (Color online) The moment of inertia scaled by MR2 as a func-
tion of the stellar mass-radius ratio M/R calculated by the selected RMF
functionals. The shaded band illustrates the relation of eq. (7).

properties of neutron stars could be calculated numerically.
From Table 1, the functional DD-MEδ, due to extra nega-
tive contribution of isovector scalar channel to the pressure,
provides smaller transition pressure Pt than PKDD and DD-
ME2, although still comparable to TW99. The transition
pressure Pt prevents the crust from collapsing to the core.
Thus, smaller transition pressure would sustain lighter crustal
mass for the radius-fixed star. Moreover, smaller stellar ra-
dius and crustal thickness would also lead to a reduction in
the crustal mass. Figure 2(b) displays the stellar radius R
and the crustal thickness Rcrust where DD-MEδ provides the
smallest value due to the softened EOS at high density. As
shown in Figure 3, the contribution of stellar mass is more
obviously dominated by the core, therefore by the stiffness
of the equation of state at high densities, especially clear for
DD-MEδ. Note that there is a good anti-correlation between
the transition density ρt and the symmetry energy slope L
[19-24], which has been checked and found to be satisfied
well in this work, see Table 1 for details.

Hence, it is concluded from the above analysis that both
the core-crust transition properties at subsaturation density
and the density dependent behavior of EOS at high densities
are responsible for determining the crustal mass. The soft-
ened EOS at high densities leads to reduced stellar radius and
crustal thickness, which, together with lowered core-crust
transition pressure, causes the reduction in the crustal mass.
Figure 2(a) and Figure 2(b) display the crustal mass Mcrust

and its thickness Rcrust separately as a function of the stellar
mass, in which DD-MEδ provides the smallest crustal mass
and thickness, and correspondingly the moments of inertia
for both the total ones I and the crustal ones ∆I are plotted
in Figure 2(c). Because of the smallest Mcrust, Rcrust and R in
comparison with the other RMF functionals, DD-MEδ shows
the most suppressed crustal moment of inertia ∆I. While the
total moment of inertia depends sensitively on the stellar ra-
dius for a given stellar mass as illustrated in eq. (7), the crustal
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moments of inertia are not only affected by the stellar radius,
but strongly related to the crustal mass. Therefore, the crustal
moment of inertia ∆I presents more distinct model depen-
dence than the total one I. So it is expected to take ∆I as a
more sensitive probe of the neutron-star matter EOS rather
than the total one.

In order to better understand the impact of the δ meson
coupling and the core-crust transition properties on the pul-
sar glitch phenomenon, it is now appropriated to discuss the
fraction of crustal moment of inertia ∆I/I. For comparison,
an approximation of the ratio can be given by [7]

∆I
I
≃ 8πPtR4

3GM2

[
MR2

I
− 2β
]

e−4.8∆R/R, (8)

where the moment of inertia I on the rhs. of the expres-
sion is just taken simply from eq. (7). It is seen that ∆I/I
is mainly dominated by the transition pressure Pt at the den-
sity ρt and the radius R of star. Figure 5 shows the calculated
fractional moment of inertia ∆I/I of neutron stars based on
the core-crust transition pressure taken from Table 1 and on
the values of I and ∆I resulting from Figure 2. For compari-
son, the approximated calculation adopting eq. (8) for ∆I/I is
plotted as well for DD-MEδ. For all RMF functionals, ∆I/I
decreases monotonously as the stellar mass goes up until to
the maximum, and DD-MEδ provides the smallest value of
∆I/I among the functionals. A little more clear, DD-ME2
and PKDD display larger ∆I/I due to stiffer EOS at high
densities and higher transition pressure Pt they predict than
TW99 and DD-MEδ, while for PKDD the largest slope L
performs the extra role as well. For TW99 and DD-MEδ
with similar Pt, the difference of ∆I/I is mainly caused by
their distinct stellar radius and, hence, mainly by the devia-
tion between the EOSs at high densities. Taking into account
the effects of the softened EOS because of the inclusion of
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Figure 5 (Color online) The fraction of crustal moment of inertia calculated
by the selected RMF functionals. The solid lines are obtained with the slowly
rotating assumptions and the dashes line is corresponding results for DD-
MEδ from the expression eq. (8). Two referred constraints of ∆I/I ≥ 0.016
and ∆I/I ≥ 0.07 [10] inferred from the measured glitches in Vela pulsar are
presented with the gray horizontal lines respectively.

the isovector scalar channel, the crustal properties of neutron
stars are more obviously influenced than the neutron star bulk
properties.

Then we could discuss about the observational constraints
on the fraction of crustal moment of inertia. The observed
glitch rates and magnitudes for the Vela pulsar lead to con-
straint as ∆I/I & 0.016 [10]. Recently, it is argued that due
to entrainment of superfluid neutrons in the crust one would
have to enlarge the inferred lower limit to ∆I/I & 0.07 and the
standard glitch model is then called into questions [10, 11].
The maximum allowed neutron star mass under both require-
ments are shown in Figure 5. It is seen that the functional
with δ meson provides lower maximum allowed mass under
both criteria. In spite of the low constraint on maximum mass
with entrainment, it is argued that, if take pairing into account
explicitly in the calculations of the effects of band structure
on the neutron superfluid density in the crust of neutron stars,
the standard models of glitches based on neutron superfluid-
ity in the crust can not be ruled out yet [18].

4 Summary

In summary, the moment of inertia and the fraction of crustal
moment of inertia of slowly rotating neutron stars, especially
the influence of the isovector scalar δ meson-nucleon cou-
pling, have been studied within the density dependent RMF
theory. It is found that the inclusion of δ meson channel
would soften the EOS and the DD-MEδ provides the smallest
stellar radius and maximum mass among the selected RMF
functionals. In spite of the correlation with the density slope
of symmetry energy at saturation density, the reduction of
stellar radius with DD-MEδ results dominantly from the soft-
ened EOS at high density and a more compact neutron star is
therefore obtained. Due to smaller stellar radius, the moment
of inertia of neutron star is reduced when δmeson is included.

Furthermore, the crustal properties of neutron star with the
inclusion of δ meson in the RMF functional are discussed.
Note that the thermodynamical method is used as a simpli-
fication of dynamical method in determining the core-crust
transition properties. The dynamical method which includes
density gradient and Coulomb terms should be studied in fur-
ther discussion. The reduced crustal thickness together with
transition pressure Pt in DD-MEδ require a lighter crustal
mass in order to resist the collapse of the crust into the core.
Thus, the stellar mass is more obviously dominated by the
core for DD-MEδ. Smaller value of crustal mass and thick-
ness were then obtained mainly because of the softened EOS
particularly at high densities. It has been shown that the
crustal moment of inertia ∆I, due to its dependence on both
the crustal mass and stellar radius, is more obviously reduced
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than the total moment of inertia in DD-MEδ. The fraction
of crustal moment of inertia ∆I/I is therefore suppressed
and DD-MEδ provides the smallest ∆I/I among the selected
RMF functionals.

For Vela pulsar, a maximum stellar mass at around 1.9 M⊙
is then predicted within the DD-MEδ functional under the
constraint of ∆I/I & 0.016. Note that, ∆I/I cannot be domi-
nated only by the core-crust transition pressure Pt determined
at low density of EOS, but also influenced by the radius and
crustal mass of star, which could be sensitive to the density
slope L of symmetry energy as well as the density depen-
dence of EOS at high density. The crustal moment of inertia
∆I is then expected as a more sensitive probe into the inter-
nal structure and the EOS of neutron stars rather than the to-
tal one I. With more sophisticated theoretical studies on the
mechanism of glitches and more plentiful and precise data
of pulsars such as from “FAST” project [88-90], the proper-
ties of EOS of nuclear matter at various densities and isospin
asymmetries could be better understood.

This work was supported by the National Natural Science Foundation of
China (Grant No. 11375076), and the Fundamental Research Funds for the
Central Universities (Grant No. lzujbky-2016-30).
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